Analysis of the magnetic properties of core-shell iron oxide nanoparticles

Authors

DOI:

https://doi.org/10.31349/RevMexFis.68.041004

Keywords:

Dopamine; Nanoparticle; Magnetization; Core-Shell

Abstract

We report on the magnetization of core-shells nanoparticles. Magnetic nanoparticles with a core of magnetite of 13 nm diameter covered with a shell of dopamine (1.1 nm thickness) are studied through vibrating sample magnetometer (VSM), Monte Carlo (MC) computer simulations, and analytical equations. All parameters involved in the theoretical analysis are experimentally determined, namely, the magnetic moment, temperature, magnetic field, core diameter, shell thickness, magnetic anisotropy, and particle concentration. The dependence of the magnetization with the magnetic field obtained through VSM and MC shows a 1% discrepancy in the magnetic saturation and up to 40% in the initial magnetic susceptibility. However, the dependence of the magnetization with the temperature obtained by MC indicates that the MNPs obey the Curie law above a critical temperature of 100 K, and dipolar interactions play an important role in the interval 20 < T < 100 K. That critical temperature is very close to the blocking temperature measured following the zero-field-cooled and zero-cooled protocols, where the dipolar interactions between MNPs become significant. Further analysis shows a Langevin-like behavior for both experimental and theoretical magnetizations. 

Author Biography

Mario Eduardo Cano González, Universidad de Guadalajara

PROFESOR E INVESTIGADOR DE TIEMPO COMPLETO

References

Eivazzadeh-Keihan R, Radinekiyan F, Maleki A, Bani MS, Hajizadeh Z, Asgharnasl S. A, International journal of biological macromolecules. 140, 407 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.031

Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA, Materials Letters. 65(12), 1882 (2011). https://doi.org/10.1016/j.matlet.2011.03.065

Zhao F, Zhang B, Feng L., Materials Letters. 68, 112 (2012). https://doi.org/10.1016/j.matlet.2011.09.116

Ebrahimi AK, Barani M, Sheikhshoaie I, Materials Science and Engineering: C. 92, 349 (2018). https://doi.org/10.1016/j.msec.2018.07.010

Woińska M, Szczytko J, Majhofer A, Gosk J, Dziatkowski K, Twardowski A, Physical Review B. 88(14), 144421 (2013). DOI: https://doi.org/10.1103/PhysRevB.88.144421

Louis Néel, Proc. Phys. Soc, A 65, 869 (1952). https://doi.org/10.1088/0370-1298/65/11/301

Smart JS, The Néel theory of ferrimagnetism. American Journal of Physics. (6), 356 (1955). https://doi.org/10.1119/1.1934006

Murtazaev AK, Ramazanov MK, Badiev MK, Physica A: Statistical Mechanics and its Applications. 507, 210 (2018). https://doi.org/10.1016/j.physa.2018.04.106

Zaim A, Kerouad M, Physica A: Statistical Mechanics and its Applications. 389(17), 3435 (2010). https://doi.org/10.1016/j.physa.2010.04.034

Preis T, Virnau P, Paul W, Schneider JJ, Journal of Computational Physics. 228(12), 4468 (2009). https://doi.org/10.1016/j.jcp.2009.03.018

Cano ME, Castañeda‐Priego R, Gil‐Villegas A, Sosa MA, Schio P, De Oliveira AJ, Chen F, Baffa O, Graeff CF, 84(3), 627 (2008). https://doi.org/10.1111/j.1751-1097.2008.00302.x

Coutiño P, Ibarra-Ávalos N, Gil-Villegas A, Revista mexicana de física. 56(6), 435 (2010). http://revistas.unam.mx/index.php/rmf/article/view/23508

Londoño-Navarro J, Riaño-Rojas JC, Restrepo-Parra E, Dyna. 82(194), 66 (2015). http://dx.doi.org/10.15446/dyna.v82n194.44297

Kuznetsov AA, Pshenichnikov AF, Physical Review E. 95(3), 032609 (2017). https://doi.org/10.1103/PhysRevE.95.032609

Jönsson PE, Garcia-Palacios JL, Physical Review B. 64(17), 174416 (2001). https://doi.org/10.1103/PhysRevB.64.174416

Kachkachi H, Azeggagh M, The European Physical Journal B-Condensed Matter and Complex Systems. 44(3), 299 (2005). https://doi.org/10.1140/epjb/e2005-00129-0

Respaud M, Journal of applied physics. 86(1), 556 (1999). https://doi.org/10.1063/1.370765

Cregg PJ, Bessais L, Journal of magnetism and magnetic materials. 202(2-3), 554 (1999). https://doi.org/10.1016/S0304-8853(99)00422-9

Cregg PJ, Bessais L, Journal of magnetism and magnetic materials. 203(1-3), 265 (1999). https://doi.org/10.1016/S0304-8853(99)00269-3

Cervantes O, Casillas N, Knauth P, Lopez Z, Virgen-Ortiz A, Lozano O, Delgado-Enciso I, Sámano AH, Rosales S, Martinez-Ceseña L, Soto V. and M.E. Cano, Materials Chemistry and Physics. 245, 122752 (2020). https://doi.org/10.1016/j.matchemphys.2020.122752

Guardia P, Batlle-Brugal B, Roca AG, Iglesias O, Morales M, Serna CJ, Labarta A, Batlle X, Journal of Magnetism and Magnetic Materials. 316(2), e756 (2007). https://doi.org/10.1016/j.jmmm.2007.03.085

Bruvera IJ, Mendoza Zélis P, Pilar Calatayud M, Goya GF, Sánchez FH. Journal of Applied Physics. 118(18), 184304-1 (2015). http://dx.doi.org/10.1063/1.4935484

Downloads

Published

2022-06-23

How to Cite

[1]
F. A. Cholico Hernández, A. . Hernández Sámano, R. Castañeda Priego, J. Ávila Paz, L. H. Quintero Hernández, and M. E. Cano González, “Analysis of the magnetic properties of core-shell iron oxide nanoparticles”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 041004 1–, Jun. 2022.