Analysis of the magnetic properties of core-shell iron oxide nanoparticles




Dopamine; Nanoparticle; Magnetization; Core-Shell


We report on the magnetization of core-shells nanoparticles. Magnetic nanoparticles with a core of magnetite of 13 nm diameter covered with a shell of dopamine (1.1 nm thickness) are studied through vibrating sample magnetometer (VSM), Monte Carlo (MC) computer simulations, and analytical equations. All parameters involved in the theoretical analysis are experimentally determined, namely, the magnetic moment, temperature, magnetic field, core diameter, shell thickness, magnetic anisotropy, and particle concentration. The dependence of the magnetization with the magnetic field obtained through VSM and MC shows a 1% discrepancy in the magnetic saturation and up to 40% in the initial magnetic susceptibility. However, the dependence of the magnetization with the temperature obtained by MC indicates that the MNPs obey the Curie law above a critical temperature of 100 K, and dipolar interactions play an important role in the interval 20 < T < 100 K. That critical temperature is very close to the blocking temperature measured following the zero-field-cooled and zero-cooled protocols, where the dipolar interactions between MNPs become significant. Further analysis shows a Langevin-like behavior for both experimental and theoretical magnetizations. 

Author Biography

Mario Eduardo Cano González, Universidad de Guadalajara



Eivazzadeh-Keihan R, Radinekiyan F, Maleki A, Bani MS, Hajizadeh Z, Asgharnasl S. A, International journal of biological macromolecules. 140, 407 (2019).

Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA, Materials Letters. 65(12), 1882 (2011).

Zhao F, Zhang B, Feng L., Materials Letters. 68, 112 (2012).

Ebrahimi AK, Barani M, Sheikhshoaie I, Materials Science and Engineering: C. 92, 349 (2018).

Woińska M, Szczytko J, Majhofer A, Gosk J, Dziatkowski K, Twardowski A, Physical Review B. 88(14), 144421 (2013). DOI:

Louis Néel, Proc. Phys. Soc, A 65, 869 (1952).

Smart JS, The Néel theory of ferrimagnetism. American Journal of Physics. (6), 356 (1955).

Murtazaev AK, Ramazanov MK, Badiev MK, Physica A: Statistical Mechanics and its Applications. 507, 210 (2018).

Zaim A, Kerouad M, Physica A: Statistical Mechanics and its Applications. 389(17), 3435 (2010).

Preis T, Virnau P, Paul W, Schneider JJ, Journal of Computational Physics. 228(12), 4468 (2009).

Cano ME, Castañeda‐Priego R, Gil‐Villegas A, Sosa MA, Schio P, De Oliveira AJ, Chen F, Baffa O, Graeff CF, 84(3), 627 (2008).

Coutiño P, Ibarra-Ávalos N, Gil-Villegas A, Revista mexicana de física. 56(6), 435 (2010).

Londoño-Navarro J, Riaño-Rojas JC, Restrepo-Parra E, Dyna. 82(194), 66 (2015).

Kuznetsov AA, Pshenichnikov AF, Physical Review E. 95(3), 032609 (2017).

Jönsson PE, Garcia-Palacios JL, Physical Review B. 64(17), 174416 (2001).

Kachkachi H, Azeggagh M, The European Physical Journal B-Condensed Matter and Complex Systems. 44(3), 299 (2005).

Respaud M, Journal of applied physics. 86(1), 556 (1999).

Cregg PJ, Bessais L, Journal of magnetism and magnetic materials. 202(2-3), 554 (1999).

Cregg PJ, Bessais L, Journal of magnetism and magnetic materials. 203(1-3), 265 (1999).

Cervantes O, Casillas N, Knauth P, Lopez Z, Virgen-Ortiz A, Lozano O, Delgado-Enciso I, Sámano AH, Rosales S, Martinez-Ceseña L, Soto V. and M.E. Cano, Materials Chemistry and Physics. 245, 122752 (2020).

Guardia P, Batlle-Brugal B, Roca AG, Iglesias O, Morales M, Serna CJ, Labarta A, Batlle X, Journal of Magnetism and Magnetic Materials. 316(2), e756 (2007).

Bruvera IJ, Mendoza Zélis P, Pilar Calatayud M, Goya GF, Sánchez FH. Journal of Applied Physics. 118(18), 184304-1 (2015).




How to Cite

F. A. Cholico Hernández, A. . Hernández Sámano, R. Castañeda Priego, J. Ávila Paz, L. H. Quintero Hernández, and M. E. Cano González, “Analysis of the magnetic properties of core-shell iron oxide nanoparticles”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 041004 1–, Jun. 2022.