Structural and morphological study of Mn, Zn and Zr freeze-dried transition metal acetates


  • A. Oliveira de Souza Federal University of the West of Bahia
  • L. F. da Silva Tupan State University of Maringa
  • A. Thyago Jensen Federal University of the West of Bahia
  • A. Paesano Junior State University of Maringa



Freeze-drying, metal acetates, termogravimetry, differential scanning calorimetry, oxide nanostructures


Manganese (II) acetates tetrahydrate, zinc dihydrate and anhydrous zirconium, processed by freeze-drying, were heat-treated in free atmosphere at different temperatures and times, generating the main oxides of these metals. These acetates were structurally characterized by scanning electron microscopy (SEM), thermogravimetry (TG), differential scanning calorimetry (DSC) and, along with all the oxides generated, by X-ray diffraction (XRD). Calculations obtained from TG data showed that manganese acetate lost two waters after freeze-drying, also confirmed by X-ray data and that the same phenomenon may be occurring for zinc acetate. The results indicate that exothermic events occurred at lower temperatures for freeze-dried acetates, which may be related to the high surface area of the material, and consequent greater reactivity. The total decomposition temperatures of the acetates in the ZnO and ZrO2 semiconducting oxides and the manganese oxides Mn2O3 and Me3O4, with excellent crystallization, were obtained.


X. Wu, X. Xu, H. Zeng and C. Guo, Self-Assembly of Semiconductor Metal Oxide Nanostructures, Journal of Nanomaterials, vol. 2013, pág. 1-2, 2013.

R. Valenzuela. Chemistry of Solid State Materials: Magnetic Ceramics. Cambridge University Press, 2005.

S. Suresh, Semiconductor Nanomaterials, Methods and Applications:A Review, Nanoscience and Nanotechnology, 3(3): 62-74, 2013.

K. Sato, H. Katayama-Yoshida and P. H. Dederichs. Dilute magnetic semiconductors. Scientific Highlight of the Month, 75:93{110, 2010.

J. Stankiewicz. Diluted magnetic semiconductors. Third Brazilian School of Semiconductor Physics, 3:281{300, 1987.

J. K. Furdyna. Diluted magnetic semiconductors: An interface of semiconductor physics and magnetism (invited). J. Appl. Phys., 53:7637-7643, 1982.

J. A. Anta, E. Guillé, and R. Tena-Zaera. ZnO-based dye-sensitized solar cells. J. Phys. Chem. C, 116:11413{11425, 2012. doi: 10.1021/jp3010025.

V. Agrahari, M. C. Mathpal, M. Kumar, and Agarwal. Investigations of optoelectronic properties in DMS SnO2 nanoparticles. J. Alloys Compd., 622:48{53, 2015. doi: 10.1016/j.jallcom.2014.10.009.

P. Chetri and A. Choudhury. Investigation of optical properties of SnO2 nanoparticles. Physica E, 47:257{263, 2013. doi: 10.1016/j.physe.2012.11.011.

Louis, R.; Joan, C. M.; Freeze Drying/Lyophilization of

pharmaceutical and Biological products. Third ed. London:

Informa Healthcare, 2010.

George-Wilhelm, O.; Peter, H. Freeze-Drying. Second ed.

Weinheim: Wiley-VCH, 2004.

de Souza A. O., Biondo, V.; Sarvezuk, P. W. C.; Bellini, J.

V.; Anizelli, P. R.; Zaia, D. A. M.; Paesano Jr., A. Quim.

Nova 2014, 37, 1132.

Antônio Oliveira de Souza*, Valdecir Biondo, Flávio Francisco Ivashita, Glécilla Colombelli de Souza Nunes and Andrea Paesano Jr. Structural and Magnetic Characterization of Nanostructured Iron Acetate. Orbital: The Electronic Journal of Chemistry.Vol.09, 261-265, 2017.

A. O. de Souza, F. F. Ivashita, V. Biondo, A. Paesano Jr. and D. H. Mosca, Structural and magnetic properties of iron doped ZrO2, J. Alloy. Compd 680, 701, 2016.

A. A. Oliveira, M. I. Valerio-Cuadros, L. F.S.Tupan, F. F. Ivashita and A. Paesano Jr., Size-effect on the optical behavior of Fe-doped CuO nanoparticles synthesized by a freeze-drying process, Materials Letters, vol. 229, Pages 327-330, 2018.c

Rodriguez-Carvajal, J., Short Reference Guide of the Program FULLPROF,

S. Biswas, L.T. Drzal, Multilayered Nanoarchitecture of Graphene

Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor

Electrodes, Chem. Mater. 22, 5667, 2010.

C. Wu, X. Lu, L. Peng, K. Xu, X. Peng, J. Huang, G. Yu, Y. Xie, Twodimensional vanadyl phosphate ultrathin nanosheets for high energy density

and flexible pseudocapacitors, Nat. Commun. 4, 2431, 2013.

V.V. Boldyrev, Reactivity Of Solids, J. Thermal Anal. 40, 1041, 1993.

H. L.C. Michalk, K. Knese, P. Eichhorn, Thermal Decomposition of Freezedried Complex Acetates of Iron, Nickel and Zinc, and Structural

Characterization of Products, J. Eur. Ceram. Soc. 8, 171, 1991.

X. Zhao, B. Zheng, C. Li, H. Gu, Acetate-derived ZnO ultrafine particles

synthesized by spray pyrolysis, Powder Technol. 100, 20, 1998.

W.-S. Dong, F.-Q. Lin, C.-L. Liu, M.-Y. Li, Synthesis of ZrO2 nanowires by

ionic-liquid route, J. colloid interf. Sci. 333, 734, 2009.

J.V. Bellini, S.N. de Medeiros, A.L.L. Ponzoni, F.R. Longen, M.A.C. de

Melo, A. Paesano Jr., Manganese ferrite synthesized from Mn(II) acetate +

hematite freeze-dried powders, Materials Chemistry and Physics 105, 92, 2007.

Teressa Nathan, Michael Cloke, and S. R. S. Prabaharan. Electrode Properties of Mn2O3 Nanospheres Synthesized by Combined Sonochemical/Solvothermal Method for Use in Electrochemical Capacitors. Journal of Nanomaterials, vol. 2008, pag 1-8, 2008.

B. Gillot, M. El Guendouzi, M. Laarj, Particle size effects on the oxidation–

reduction behavior of Mn3O4 hausmannite, Materials Chemistry and Physics

, 54, 2001.




How to Cite

A. Oliveira de Souza, L. F. da Silva Tupan, A. Thyago Jensen, and A. Paesano Junior, “Structural and morphological study of Mn, Zn and Zr freeze-dried transition metal acetates”, Rev. Mex. Fís., vol. 69, no. 1 Jan-Feb, pp. 011001 1–, Jan. 2023.