Numerical characterization of shock separation in a laboratory-scale nozzle
DOI:
https://doi.org/10.31349/RevMexFis.69.010601Keywords:
Overexpanded nozzle, contraction profile, shock separation, thrust coefficient, computational fluid dynamics (CFD)Abstract
The purpose of this work is to perform a CFD study of the free shock separation (FSS) in an overexpanded nozzle. The original contraction profile of the nozzle was numerically replaced by a set of curves, where the overall length was identical with the test-rig. For the baseline case, the static pressure and the separation location exhibited a good agreement with the experimental measurements, provided by the DLR. The Error-function contraction profile has revealed a relative displacement of 1.38% on the separation location in the core flow direction. In this case, there was an increase in the thrust coefficient, that has been improved up to 1.7% in comparison with the baseline nozzle design.
References
Gilham, S., Ivey, P.C. and Owen, J.M., 1994. The Transfer of heat by Self-induced flow in a rotating tube, Vol.116, pp.316-326, https://doi.org/10.1115/1.2928367.
Chul-Huyng L., Al-Ajlouni M., Syred N., 1995, Centrifuges design for submicron particle separation, Journal of energy research and development, Vol.17, No.3-4, pp.51-59.
Al-Ajlouni, M. and Al-Hamdan, A., 2002. Engine exhaust operated ejector for vehicle air conditioning. Mu‟ tah Journal for Research and Studies, 17(3), pp.119-137.
Haidn, O.J. and Habiballah, M., 2003. Research on high pressure cryogenic combustion. Aerospace Science and Technology, 7(6), pp.473-491, https://doi.org/10.1016/S1270-9638(03)00052-X .
Caisso, P., Souchier, A., Rothmund, C., Alliot, P., Bonhomme, C., Zinner, W., Parsley, R., Neill, T., Forde, S., Starke, R. and Wang, W., 2009. A liquid propulsion panorama. Acta Astronautica, 65(11-12), pp.1723-1737, https://doi.org/10.1016/j.actaastro.2009.04.020 .
Nasuti, F., Onofri, M. and Pietropaoli, E., 2005, February. The influence of nozzle shape on the shock structure in separated flows. In Fifth European Symposium on Aerothermodynamics for Space Vehicles (Vol. 563, p. 353), https://adsabs.harvard.edu/pdf/2005ESASP.563..353N .
Hadjadj, A., Perrot, Y. and Verma, S., 2015. Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles. Aerospace science and technology, 42, pp.158-168,https://doi.org/10.1016/j.ast.2015.01.010.
Zucrow, M.J. and Hoffman, J.D., 1977. Gas dynamics. Volume2-multidimensional flow. New York.
Argrow, B.M. and Emanuel, G.E.O.R.G.E., 1991. Computational analysis of the transonic flow field of two-dimensional minimum length nozzles,113, pp.479-488, https://doi.org/10.1115/1.2909521.
Ostlund, J. and Muhammad-Klingmann, B., 2005. Supersonic flow separation with application to rocket engine nozzles. Appl. Mech. Rev., 58(3), pp.143-177,https://doi.org/10.1115/1.1894402.
Stark, R., 2005. Flow separation in rocket nozzles, a simpleriteria. In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 3940), https://doi.org/10.2514/6.2005-3940.
Cuffel, R.F., Back, L.H. and Massier, P.F., 1969. Transonic flowfield in a supersonic nozzle with small throat radius of curvature. AIAA Journal, 7(7), pp.1364-1366, https://doi.org/10.2514/3.5349 .
Ho, T.L. and Emanuel, G., 2000. Design of a nozzle contraction for uniform sonic throat flow. AIAA journal, 38(4), pp.720-723, https://doi.org/10.2514/2.1019.
Brassard, D. and Ferchichi, M., 2005. Transformation of a polynomial for a contraction wall profile. J. Fluids Eng., 127(1), pp.183-185, https://doi.org/10.1115/1.1852492 .
Germer, E.M. and Marchi, C.H., 2018. Effect of Convergent Section Contour on the Sonic Line in Rocket Engine Nozzles. Journal of Aerospace Technology and Management, 10. https://doi.org/10.5028/jatm.v10.924
Kumar, M., Sahoo, R.K. and Behera, S.K., 2019. Design and numerical investigation to visualize the fluid flow and thermal characteristics of non-axisymmetric convergent nozzle. Engineering Science and Technology, an International Journal, 22(1), pp.294-312, https://doi.org/10.1016/j.jestch.2018.10.006 .
Evans, S.A., 1975. JANNAF Rocket Engine Performance Prediction and Evaluation Manual. CHEMICAL PROPULSION INFORMATION AGENCY LAUREL MD.
Kronmüller, H., Schäfer, K., Zimmermann, H. and Stark, R., 2002. Cold gas subscale test facility P6. 2 at DLR Lampoldshausen. In International Symposium on Propulsion for Space Transportation of the XXIst century (pp. 1-8), https://elib.dlr.de/1561/1/TF-P62-Kronmueller-etal-2002.pdf.
Stark, R. and Hagemann, G., 2007. Current status of numerical flow prediction for separated nozzle flows,2ND EUROPEAN CONFERENCE FOR AEROSPACE SCIENCES (EUCASS), Brussels (Belgium),pp.1-8,https://elib.dlr.de/49262/.
Stark, R. and Wagner, B., 2009. Experimental study of boundary layer separation in truncated ideal contour nozzles. Shock Waves, 19(3), pp.185-191, https://doi.org/10.1007/s00193-008-0174-6.
NEDJARI M, MAHFOUDI E, BENAROUS A, HAOUI R, Prediction numerique du coefficient de poussee pour une tuyere surdetendue, Third International Conference on Energy, Materials, Applied Energetics and Pollution ICEMAEP2016, October 30-31, 2016, Constantine, Algeria, pp.195-200.
Spalart, P.R., Allmaras, S.R., Spatial Research Review 1, (1994) 5-21.
Nedjari M., Benarous A., Benazza A., Analyse du décollement libre dans une tuyère sur-détendue : Effet des paramètres de conception - Mohammed NEDJARI Mechanical French Congress (CFM), Brest, France, 2019
Roe, P.L., 1986. Characteristic-based schemes for the Euler equations. Annual review of fluid mechanics, 18(1), pp.337-365, https://doi.org/10.1146/annurev.fl.18.010186.002005 .
Khan, S.A., Mohiuddin, M., Saleel, C.A. and Fharukh, G.M., 2019. Investigation of the effects of nozzle exit mach number and nozzle pressure ratio on axisymmetric flow through suddenly expanded nozzles. International Journal of Engineering and Advanced Technology (IJEAT) ISSN, 8, pp.570-578.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Mohammed Nedjari, A. Benarous, A. Benazza
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.