Effect of pressure dependence on N.E.C of Argon thermal plasmas mixed with helium

Authors

  • F. Boudahri University of Relizane
  • Abdel Karim Ferouani ESSA-Tlemcen
  • B. Liani University A. Belkaid of Tlemcen
  • S. Ailas University A. Belkaid of Tlemcen
  • M. Lemerini University A. Belkaid of Tlemcen

DOI:

https://doi.org/10.31349/RevMexFis.68.041501

Keywords:

Plasma simulation, Plasma diagnostic, Net emission, Radiation, Argon−Helium

Abstract

In the present work, we have calculated the radiative transfer, it means the radiative energy that escapes from a plasma formed from a mixture of Argon−Helium. The computations take into account several pressures between 1 ≤ p ≤ 100 atm in the temperature T wide range of 5000 − 30 000 K. In the case of the plasmas is supposed to be in local thermodynamic equilibrium. Where the contributions have been treated separately in the calculation: atomic emission lines self-absorbed and not self-absorbed, continuum (radiative attachment, radiative recombination and radius). The results show that a large part of radiation is absorbed at the first crossed millimeter and also the contribution of resonance lines is very important. These are the lines which are strongly absorbed.

References

P. Freton, J. J. Gonzalez and A. Gleizes, Comparison between a two-and a three-dimensional arc plasma configuration, Journal of Physics D: Applied Physics, 33 (2000) 2442. https://doi.org/10.1088/0022-3727/33/19/315.

M. Bouaziz, M. Razafinimanana and J. J. Gonzalez et al., An experimental and theoretical study of the influence of copper vapour on a arc plasma at atmospheric pressure, Journal of Physics D: Applied Physics, 31 (1998) 1570. https://doi.org/10.1088/0022-3727/31/13/011.

P. C. Huang, J. Heberlein and E. Pfender, Particle behavior in a two-fluid turbulent plasma jet, Surface and Coatings Technology, 73 (1995) 142. https://doi.org/10.1016/0257-8972(94)02382-4.

V. Aubrecht and J. J. Lowke, Calculations of radiation transfer in SF6 plasmas using the method of partial characteristics, Journal of Physics D: Applied Physics, 27 (1994) 2066. https://doi.org/10.1088/0022-3727/27/10/013.

P. Fauchais, Understanding plasma spraying, Journal of Physics D: Applied Physics, 37 (2004) R86. https://doi.org/10.1088/0022-3727/37/9/R02.

S. Ailas, B. Liani and A. K. Ferouani, Effect of molecules in radiative emission from the thermal plasmas of CH4-H2 mixtures, High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes. 20 (2016) 279. https://doi:10.1615/HighTempMatProc.2016017885.

R. Hannachi, Y. Cressault and Ph. Teulet et al., Net emission of H2O-air-MgCl2/CaCl2/NaCl thermal plasmas, J. Phys. D: Appl. Phys., 41 (2008) 205212. https://doi.org/10.1088/0022-3727/41/20/205212.

A. Gleizes, J. J. Gonzalez and B. Liani et al., Calculation of net emission coefficient of thermal plasmas in mixtures of gas with metallic vapour, J. Phys. D: Appl. Phys., 26 (1993) 1921. https://doi.org/10.1088/0022-3727/26/11/013.

J. Menart, S. Malik and L. Lin, Coupled radiative, flow and temperature-field analysis of a free−burning arc, Journal of Physics D: Applied Physics, 33 (2000) 257. https://doi.org/10.1088/0022-3727/33/3/312.

G. Raynal and A. Gleizes, Radiative transfer calculation in SF6 arc plasmas using partial characteristics, Plasma Sources Science and Technology, 4(1) (1995) 152. https://doi.org/10.1088/0963-0252/4/1/017.

J. J. Lowke, Predictions of arc temperature profiles using approximate emission coefficients for radiation losses, Journal of Quantitative Spectroscopy and Radiative Transfer, 14(2) (1974) 111. https://doi.org/10.1016/0022-4073(74)90004-1.

S. Ailas, Etude du spectre moléculaire émis par un plasma thermique formé de melange CH4-H2. Tesis de doctorado, University Tlemcen-Algeria, (2017).

H. W. Drawin and F. Emard, Optical Escape Factors for Boundbound and Free-bound Radiation from Plasmas. I. Constant Source Function, Beitr. Plasma. Phys., 13 (1973) 143. https://doi.org/10.1002/ctpp.19730130304.

Y. Naghizadeh-Kashani, Y. Cressault and A. Gleizes, Net emission coefficient of air thermal plasmas, J. Phys. D: Appl. Phys., 35 (2002) 2925. https://doi.org/10.1088/0022-3727/35/22/306.

S. Chauveau, M. Y. Perrin, Ph. Riviere et al., Contributions of diatomic molecular electronic systems to heated air radiation, J. Quant. Spectrosc. Radiat. Transfer, 72(4) (2002) 503. https://doi.org/10.1016/S0022-4073(01)00141-8.

Y. Cressault and A. Gleizes, Thermal plasma properties for Ar−Al, Ar−Fe and Ar−Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure, J. Phys. D: Appl. Phys., 46 (2013) 415206. https://doi.org/10.1088/0022-3727/46/41/415206.

T. Billoux, Y. Cressault and A. Gleizes, Net emission coefficient for CO-H2 thermal plasmas with the consideration of molecular systems, J. Quant. Spectrosc. Radiat. Transfer., 166 (2015) 42. https://doi.org/10.1016/j.jqsrt.2015.07.011.

B. Liani, M. Rahmouni and A. H. Belbachir et al., Computation of net emission of CH4-H2 thermal plasmas, J. Phys. D: Appl. Phys., 30 (1997) 2964. https://doi.org/10.1016/j.jqsrt.2015.07.011.

S. Askri, A. K. Ferouani and B. Liani et al., Effect of pressure on thermodynamic properties of CH4 thermal plasmas mixed with H2. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 23(4) (2019) 365. https://doi:10.1615/HighTempMatProc.2020032931.

D. Godin and J. Y. Trépanier, A Robust and Efficient Method for the Computation of Equilibrium Composition in Gaseous Mixtures, Plasma Chemistry and Plasma Processing, 24 (2004) 447. https://doi.org/10.1007/s11090-004-2279-8.

M. W. Chase, C. A. Davies and J. R. Downey et al., JANAF thermochemical tables, J. Phys. Chem. Ref. Data, 14 (1985) 927.

G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, (Van-Nostrand-Reinhold, New York, USA, 1950).

K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules, (Van Nostrand Reinhold, New York, 1978).

J. O. Hirschfelder, C. F. Curtis and B. R. Byron, Molecular Theory of Gases and Liquids,(Wiley, New York, USA 1964).

J. Menart and S. Malik, Net emission coefficients for Argon-iron thermal plasmas, Journal of Physics D: Applied Physics, 35 (2002) 867. https://doi.org/10.1088/0022-3727/35/9/306.

T. Moscicki, J. Hoffman and Z. Szymanski, Net emission coefficients of low temperature thermal iron-helium plasma, Optica Applicata, 38 (2008) 365. http://opticaapplicata.pwr.edu.pl/.

M. Wendt, Net emission coefficients of Argon iron plasmas with electron Stark widths scaled to experiments, Journal of Physics D: Applied Physics, 44(15) (2011) 125201. https://doi.org/10.1088/0022-3727/44/12/125201.

R. W. Liebermann and J. J. Lowke, Radiation emission coefficients for sulfur hexafluoride arc plasmas, J. Quant. Spectrosc. Radiat. Transfer, 16(3) (1976) 253. https://doi.org/10.1016/0022-4073(76)90067-4.

A. Gleizes, J. J. Gonzalez and M. Razanimanana et al., Influence of radiation on temperature field calculation in SF6 arcs, Plasma Sources Sci. Technol., 1(2)(1992) 135. https://doi.org/10.1088/0963-0252/1/2/011.

Y. Wu, C. Wang and H. Sunet al., Properties of C4F7N−CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients, Journal of Physics D: Applied Physics, 51(15) (2018) 155206. https://doi.org/10.1088/1361-6463/aab421.

M. I. Boulos, P. Fauchais and E. Pfender, Thermal Plasmas Fundamentals and Applications, 1 (New York, London: Plenum, USA 1994).

B. Liani, Calculation of the radiation emitted by arc plasmas composed of a mixture of gas and metal vapor ”. Tesis de doctorado, University Paul Sabatier, Toulouse, France (1992).

H. W. Drawin and P. Felenbok, Data for Plasma in Local Thermodynamic Equilibrium, (Gauthier-Villars, Paris, France 1965).

NIST Atomic Spectra Database http://physics.nist.gov/PhysRefData/ASD/index.html.

D. Hofsaess, Emission continua of rare gas plasmas, Journal of Quantitative Spectroscopy and Radiative Transfer, 19(3) (1978) 339. https://doi.org/10.1016/0022-4073(78)90068-7.

H. R. Griem, Spectral Line Broadening by Plasmas, (New York, Academic, USA 1974).

M. Baranger, Atomic and Molecular Processes,(ed D Bates,New York, Academic, USA 1962).

G. Traving, Interpretation of Line Bbroadening and Line Shift in Plasma Diagnostics, (ed W Lochte-Holtgreven Amsterdam, North-Holland 1968).

Downloads

Published

2022-06-07

How to Cite

[1]
F. Boudahri, A. K. Ferouani, B. Liani, S. Ailas, and M. Lemerini, “Effect of pressure dependence on N.E.C of Argon thermal plasmas mixed with helium”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 041501 1–, Jun. 2022.