Liquid deposition modelling 3D printing of semiconductor tin sulphide (SnS) thin film for application in optoelectronic and electronic devices


  • Thomas Ojonugwa Daniel Alex Ekwueme-Federal University Ndufu-Alike
  • D. Nmadu Alex Ekwueme-Federal University Ndufu-Alike
  • M. Alpha Nigerian Army University Biu
  • S. O. Ali Federal University of Technology
  • S. O. Amadi Alex Ekwueme-Federal University Ndufu-Alike
  • C. Onuegbu Alex Ekwueme-Federal University Ndufu-Alike



3D printing, SnS thin films, lLiquid deposition modelling, optoelectronic, electronic


This study is focused on the investigation of three-dimensional (3D) printed SnS thin film and the optimisation of SnS thin film thickness by additive layer deposition of the film using three-dimensional printing system based on liquid deposition modelling (LDM). Voids in separate island-like state and traps associated with certain film thickness affect charge carriers due to the presence of large grain boundaries associated with small grains which acts as electron trap thus affecting SnS thin film's optical band gap energy and electrical conductivity among others. SnS thin films were printed on glass substrate using LDM-3D printing. Surface Profilometer, Energy dispersive X-ray spectroscopy, X-ray diffractometer, Scanning electron microscope, Uv-vis spectrophotometer and four point probe were used to characterise the SnS thin films. The conductivity of 0.002987 (Ωm)-1 and optical energy band gap of 1.37 eV of 0.6 μm 3D printed SnS thin film was optimum and favours the attainment of the threshold voltage for optoelectronic and electronic application. The results demonstrate the potential of the LDM-3D printing of thin film for materials deposition and application which provides a new way of layer thickness variation and levelling of semiconductor thin film.

Author Biography

Thomas Ojonugwa Daniel, Alex Ekwueme-Federal University Ndufu-Alike



P Thiruramanathan, G S Hikku, R Krishna-Sharman, andS M Shakthi, Int J Chemtech Res, 1, 59 (2015).

T O Daniel, E U Uno, K U Isah, and U Ahmadu, East Eur. J. Phys,3, 71 (2019).

M Patel, I Mukhopadhyay and A Ray, J ALLOY COMPD, 619, 458(2015).

T O Daniel, E U Uno, K U Isah and U Ahmadu, East Eur. J. Phys, 2, 9(2020).

A Tanusevski, Semicond. Sci. Technol, 18, 501 (2015).

A Akkari, C Guasch, N Kamoun-Turki, J ALLOY COMPD, 490, 180 (2010).

C Gao and H Shen, Thin Solid Films, 520, 3523(2012).

R Mariappan, M Ragavendar, and V Ponnuswamy, Opt. Appl, 91(4), 989(2011).

V Robles, J F Trigo, C Guillen and J Hertero, Energy Procedia, 44, 96 (2014).

T H Patel, TOSURSJ, 4, 6(2012).

T Ikuno, Appl.Phys. lett, 102,193901 (2013).

P Sinsermuksakul, Adv.Energy Mater, 4, 1400496 (2014).

P Blake, P D Brimicombe, R R Nair, T J Booth, D Jiang, F Schedin, D Ponomarenko, S V Morotov, H F Gleeson, E W Hill, A K Geim and KS Novoselov, Nano Lett, 8, 1704 (2008).

I Gibson, D W Rosen, and B Stucker, Springer, 2010. DOI: 10.1007/978-1-4419-1120-9_11.

G Postiglione, G Natale, GGriffini, M Levi, and S Turi, COMPOS PART A-APPL S, 76, 110(2015).

M Guvendiren, J Molde, R M Soares and J Kohn,ACS Biomater. Sci. Eng,2, 1679 (2016).

B C Gross, J L Erkal, S Y Lockwood, C Chen andD M Spence, Anal. Chem, 86, 3240 (2014).

R D Farahani, K Chizari and D Therriault, Nanoscale, 6, 10470(2014).

M Singh, A P Haring, Y Tong, E Cesewski, E Ball, R Jasper, E M Davis and B N Johnson, ACS Appl. Mater. Interfaces, 11 (6), 6652(2019).

K Charoensopa, A Hansuebsai and K Manseki,Key Eng. Mater,843, 79(2020).

S V Dubkov, M V Silibin, S V Lebedev, R I Ryazanov and V V Shvartsman,2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg and Moscow, Russia, 2020, 2587 (2020). doi: 10.1109/EIConRus49466.2020.9039127.

I Ilican, Y Caglar and M Caglar, J. Optoelectron. Adv. Mater, 10(10), 2578(2008).

A Mukherjee and P Mitra, Mater Sci-Poland, 33(4),847(2015). doi:10.1515/msp-2005-0118

B G Jeyaprakash, K R Ashok, K Kesavan and A Amalarani, Am .J. Sci, 6, 3(2010).

M Devika, N R Koteeswara, K Ramesh, K R Gunasekhar, E S R Gopal and

R K T Ramakrishna, Semicond. Sci. Technol,21, 1125 (2006).

P Jain and P Arun, J. Semicond, 34 (9), 1 (2013).

C A Schneider, W S Rasband and K W Eliceiri, Nat.Methods, 9(7), 671 (2012).

T S Reddy and MC Kumar, RSC, 6, 95680(2016).

G.D. Deshmukh, S M Patil and P H Pawar, J. chem. biol. phys. Sci,5(3), 2769 (2015).

A U Moreh, M Momoh, H N Yahaya, B Hamza, I G Saidu and S Abdullahi, Int. J. Appl. Math. Comput. Sci, 8(7), 1084.

O E Ogah, G Zoppi, I Forbes, RW Miles, Thin Solid Films, 517, 2485 (2009).

E Guneri, C Ulutas, F Kirmizigul, G Altindemir, F Gode and C Gumus, Appl.Surf. Sci, 257, 1189 (2010).

M S Selim, M E Gouda, M G El-shaarawy, A M Salema and W A AbdEl-Ghany, JASR, 7(6), 955 (2011).

H Du, Xi Lin, Z Xu and D Chu, Review Springeri92015).doi:10.1007/s10853-015-9121-y

A Tumuluri, K L Naidu, K C J Raju, Int. J. Chemtech Res, 6(6), 3353(2014).

M F A Alias, R M Aljanal, H K H Al-lamy, H.K.H and K A W Adem, Mater Sci,2 (7), 193(2013).




How to Cite

T. O. Daniel, D. Nmadu, M. Alpha, S. O. Ali, S. O. Amadi, and C. Onuegbu, “Liquid deposition modelling 3D printing of semiconductor tin sulphide (SnS) thin film for application in optoelectronic and electronic devices”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 051001 1–, Aug. 2022.