Radiation from a dipole perpendicular to the interface between two planar semi-infinite magnetoelectric media

Authors

  • O. J. Franca Institut für Physik, Universität Kasel
  • Luis Fernando Urrutia Instituto de Ciencias Nucleares, UNAM.

DOI:

https://doi.org/10.31349/RevMexFis.68.060701

Keywords:

Magnetoelectric effect, dipole radiation, electromagnetic wave propagation

Abstract

We consider two semi-infinite magnetoelectric media with constant dielectric permittivity separated by a planar interface, whose electromagnetic response is described by non-dynamical axion electrodynamics and investigate the radiation of a point-like electric dipole located perpendicularly to the interface. We start from the exact Green's function for the electromagnetic potential, whose far-field approximation is obtained using a modified steepest descent approximation. We compute  the angular distribution of the radiation and the total radiated power finding different interference patterns, depending on the relative position dipole-observer, and polarization mixing effects which are all absent in the standard dipole radiation. They are a manifestation of the magnetoelectric effect induced by axion electrodynamics. We illustrate our findings with some numerical estimations employing realistic media as well as some hypothetical choices in order to illuminate the effects of the magnetoelectric coupling which is usually very small.

References

K.A. Michalski and J. R. Mosig, The Sommerfeld half-space problem revisited: from radio frequencies and Zenneck waves to visible light and Fano modes, Journal of Electromagnetic Waves and Applications, 30:1 (2016) 1. https://doi.org/10.1080/09205071.2015.1093964

T.I. Jeon and D. Grischkowsky, THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet, Appl. Phys. Lett. 88 (2006) 061113 . https://doi.org/10.1063/1.2171488

L. Novotny, Allowed and forbidden light in near-field optics. I. A single dipolar light source, J. Opt. Soc. Am. A 14 (1997) 91. https://doi.org/10.1364/JOSAA.14.000091

S.A. Maier and H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures, Journal of Applied Physics 98 (2005) 011101. https://doi.org/10.1063/1.1951057

R. Gordon, Surface plasmon nanophotonics: A tutorial, IEEE Nanotechnology Magazine 2 (2008) 12. https://doi.org/10.1109/MNANO.2008.931481

A. Sommerfeld, Über die Ausbreitung der Wellen in der drahlosen Telegraphie, Ann. Physik 28 (1909) 665. https://doi.org/10.1002/andp.19093330402

H. v. Hörschelmann, Über die Wirkungsweise des geknickten Marconischen Senders in der drahtlosen Telegraphie, Jb. drahtl. Telegr. u. Teleph. 5 (1911) 14 and 188.

A. Sommerfeld, Über die Ausbreitung der Wellen in der draht-losen Telegraphie, Ann. Physik 81 (1926) 1135. https://doi.org/10.1002/andp.19263862516

H. Weyl, Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter, Ann. Physik 60 (1919) 481. https://doi.org/10.1002/andp.19193652104

M.J.O. Strutt, Strahlung von Antennen unter dem Einfluss der Erdbodeneigenschaften, Ann. Physik 1 (1929) 721. https://doi.org/10.1002/andp.19293930603

B. Van der Pol and K.F. Niessen, Über die Ausbreitung elektromagnetischer Wellen Über einer ebenen Erde, Ann. Physik 6 (1930) 273.

A. Sommerfeld, Partial Differential Equations in Physics, 1st ed. 1949 and 5th ed. 1967 (New York: Academic Press).

Alfredo Baños, Jr.,Dipole Radiation in the Presence of a Conducting Half-Space (Pergamon Press, New York, 1966).

L.B. Felsen and N. Marcuvitz,Radiation and Scattering of Waves, (Wiley-IEEE Press, 1973).

L.M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic Press, New York, 1980).

See for example, P. C. Clemmow, The Plane Wave Spectrum Representation of Electro Magnetic Fields, (Pergamon Press, Oxford, 1966); G. Tyras, Radiation and propagation of electromagnetic waves, ( Academic Press, New York, 1969); K. C. Yeh and C. H. Liu, Theory of ionospheric waves, (Academic Press, New York, 1972); J. A. Kong, Theory of electromagnetic waves, (John Wiley & Sons Inc, 1975); J. R. Wait, Electromagnetic Waves in Stratified Media, (Pergamon Press, 1962); J. R. Wait, Wave Propagation Theory, (Pergamon, New York, 1981); J. R. Wait,Electromagnetic wave theory, (Harper & Row, New York, 1985).

I.E. Dzyaloshinskii, On the magneto-electrical effect in antiferromagnets, JETP 10 (1960) 628.

N.D. Astrov, The magneto-electrical effect in antiferromagnets, JETP 11 (1960) 708.

M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys. 38 (2005) R123. https://doi.org/10.1088/0022-3727/38/8/R01

X.L. Qi, T.L. Hughes, S.C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78 (2008) 195424. https://doi.org/10.1103/PhysRevB.78.195424

J. Wang, B. Lian, X.L. Qi, and S.C. Zhang, Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state, Phys. Rev. B 92(2015) 081107(R). https://doi.org/10.1103/PhysRevB.92.081107

T. Morimoto, A. Furusaki, and N. Nagaosa, Topological magnetoelectric effects in thin films of topological insulators, Phys. Rev. B 92 (2015) 085113. https://doi.org/10.1103/PhysRevB.92.085113

A.M. Essin, J.E. Moore, and D. Vanderbilt, Magnetoelectric Polarizability and Axion Electrodynamics in Crystalline Insulators, Phys. Rev. Lett. 102 (2009) 146805. https://doi.org/10.1103/PhysRevLett.102.146805

M. Mogi et al., A magnetic heterostructure of topological insulators as a candidate for an axion insulator, Nat. Mater. 16 (2017) 516-521. https://doi.org/10.1038/nmat4855

K. Nomura and N. Nagaosa, Surface-Quantized Anomalous Hall Current and the Magnetoelectric Effect in Magnetically Disordered Topological Insulators, Phys. Rev. Lett. 106 (2011) 166802. https://doi.org/10.1103/PhysRevLett.106.166802

M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82 (2010) 3045. https://doi.org/10.1103/RevModPhys.82.3045

X.L. Qi, S.C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83 (2011) 1057. https://doi.org/10.1103/RevModPhys.83.1057

M. Franz and L. Molenkamp, Eds. Topological Insulators (Contemporary Concepts of Condensed Matter Science), Vol. 6, (Elsevier, Amsterdam, 2013).

P. Sikivie, Experimental Tests of the “Invisible” Axion, Phys. Rev. Lett. 51 (1983) 1415. https://doi.org/10.1103/PhysRevLett.51.1415

R. Peccei and H. Quinn, CP Conservation in the Presence of Pseudoparticles, Phys. Rev. Lett. 38 (1977) 1440. https://doi.org/10.1103/PhysRevLett.38.1440

S. Weinberg, The U(1) problem, Phys. Rev. D 11 (1975) 3583. https://doi.org/10.1103/PhysRevD.11.3583

F. Wilczek, Two applications of axion electrodynamics, Phys. Rev. Lett. 58 (1987) 1799. https://doi.org/10.1103/PhysRevLett.58.1799

R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47 (1993) 1651(R). https://doi.org/10.1103/PhysRevB.47.1651

G. Ortiz and R.M. Martin, Macroscopic polarization as a geometric quantum phase: Many-body formulation, Phys. Rev. B 49 (1994) 14202. https://doi.org/10.1103/PhysRevB.49.14202

J.D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, Inc., New York, 1999).

A. Mart´ın-Ruiz and L.F. Urrutia, Interaction of a hydrogenlike ion with a planar topological insulator, Phys. Rev. A 97 (2018) 022502. https://doi.org/10.1103/PhysRevA.97.022502

J. Schwinger, L.L. DeRaad Jr, K.A. Milton and Wu-Yang Tsai, Classical Electrodynamics, (Westview Press, Boulder, Colorado, 1998).

A. Martín-Ruiz, M. Cambiaso and L.F. Urrutia, Green’s function approach to Chern-Simons extended electrodynamics: An effective theory describing topological insulators, Phys. Rev. D 92 (2015) 125015. https://doi.org/10.1103/PhysRevD.92.125015

A. Mart´ın-Ruiz, M. Cambiaso and L.F. Urrutia, Electro- and magnetostatics of topological insulators as modeled by planar, spherical, and cylindrical θ boundaries: Green’s function approach, Phys. Rev. D 93 (2016) 045022. https://doi.org/10.1103/PhysRevD.93.045022

A. Martín-Ruiz, M. Cambiaso and L.F. Urrutia, Electromagnetic description of three-dimensional time-reversal invariant ponderable topological insulators, Phys. Rev. D 94 (2016) 085019. https://doi.org/10.1103/PhysRevD.94.085019

A. Martín-Ruiz, M. Cambiaso and L.F. Urrutia. A Green’s function approach to the Casimir effect on topological insulators with planar symmetry, Europhysics Letters 113 (2016) 60005. https://doi.org/10.1209/0295-5075/113/60005

O.J. Franca, L.F. Urrutia and Omar Rodríguez-Tzompantzi. Reversed electromagnetic Vavilov-Čerenkov radiation in naturally existing magnetoelectric media, Phys. Rev. D 99 (2019) 116020. https://doi.org/10.1103/PhysRevD.99.116020

A. Sommerfeld, Partial Differential Equations in Physics, (Academic Press, New York, 1964).

Chew, Weng Cho, Waves and Fields in Inhomogenous Media, (IEEE Press Series on Electromagnetic Wave Theory, New York, 1990).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University Press, 1995).

W.C. Chew, A quick way to approximate a Sommerfeld-Weyltype integral (antenna far-field radiation), IEEE Transactions on Antennas and Propagation 36 (1988) 1654. https://doi.org/10.1109/8.9724

J.R. Wait, Electromagnetic waves in stratified media, Revised edition including supplemented material, (Pergamon Press, Oxford, 1970).

A. Crosse, S. Fuchs, S.Y. Buhmann, Electromagnetic Green’s function for layered topological insulators, Phys. Rev. A 92 (2015) 063831. https://doi.org/10.1103/PhysRevA.92.063831

L. Novotny and B. Hecht, Principles of Nano Optics, (Cambridge University Press, 2006).

H.H. Choi, H.J. Kim, J. Noh, Ch-W. Lee and W. Jhe, Measurement of angular distribution of radiation from dye molecules coupled to evanescent wave, Phys. Rev. A 66(2002)05383, https://doi.org/10.1103/PhysRevA.66.053803

T. Tanabe, T. Odagiri, M. Nakano, I.H. Suzuki, and N. Kouchi, Large Pressure Effect on the Angular Distribution of Two Lyman-α Photons Emitted by an Entangled Pair of H(2p) Atoms in the Photodissociation of H2, Phys. Rev. Lett. 103 (2009) 173002, https://doi.org/10.1103/PhysRevLett.103.173002

A. Corney, Atomic and Laser Spectroscopy, (Oxford University Press, 2006), Chapter 6.

H. Drexhage, Influence of a dielectric interface on fluorescence decay time, J. Luminescence 1 (1970) 693.

H. Drexhage, Spontaneous emission rate in the presence of a mirror, in Proceedings of the 3rd Rochester Conference on Coherence and Quantumn Optics, edited by L. Mandel and E. Wolf (Plenum, New York, 1973), p. 187.

S.S. Batsanov, E.D. Ruchkin, I.A. Poroshina, Refractive Indices of Solids, (Springer Briefs in Applied Sciences and Technology, Singapore, 2016).

J.-P. Rivera, A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics, Eur. Phys. J. B 71 (2009) 299. https://doi.org/10.1140/epjb/e2009-00336-7

X.L. Qi, R.D. Li, J.D. Zang, and S.C. Zhang, Inducing a Magnetic Monopole with Topological Surface States, Science 323 (2009) 1184. https://doi.org/10.1126/science.1167747

T. Sato, K. Segawa, H. Guo, K, Sugawara, S. Souma, T. Takahashi and Y. Ando, Direct Evidence for the Dirac-Cone Topological Surface States in the Ternary Chalcogenide TlBiSe2, Phys. Rev. Lett. 105 (2010) 136802, https://doi.org/10.1103/PhysRevLett.105.136802

Y.L. Chen et al., Single Dirac Cone Topological Surface State and Unusual Thermoelectric Property of Compounds from a New Topological Insulator Family, Phys. Rev. Lett. 105 (2010) 266401, https://doi.org/10.1103/PhysRevLett.105.266401

A.G. Grushin and A. Cortijo, Tunable Casimir Repulsion with Three-Dimensional Topological Insulators, Phys. Rev. Lett. 106 (2011) 020403, https://doi.org/10.1103/PhysRevLett.106.020403

C.L. Mitsas and D.I. Siapkas, Phonon and electronic properties of TlBiSe2 thin films, Solid State Communications 83 (1992) 857, https://doi.org/10.1016/0038-1098(92)90900-T

T. Maruyama et al., Large voltage-induced magnetic anisotropy change in a few atomic layers of iron, Nat. Nanotechnol. 4 (2009) 158. https://doi.org/10.1038/nnano.2008.406

C. Bi et al., Reversible control of Co magnetism by voltage-induced oxidation, Phys. Rev. Lett. 113 (2014) 267202. https://doi.org/10.1103/PhysRevLett.113.267202

T.H.E. Lahtinen, K. J. A. Franke & S. van Dijken, Electric-field control of magnetic domain wall motion and local magnetization reversal, Sci. Rep. 2(2012)258. https://doi.org/10.1038/srep00258

W. Eerenstein, N.D. Mathur and J.F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759, https://doi.org/10.1038/nature05023

M. Kumar, S. Shankar, A. Kumar, A. Anshul, M. Jayasimhadri and O.P. Thakur, Progress in multiferroic and magnetoelectric materials: applications, opportunities and challenges, J Mater Sci: Mater Electron 31 (2020) 19487, https://doi.org/10.1007/s10854-020-04574-2

N.A. Spaldin and R. Ramesh, Advances in magnetoelectric multiferroics, Nature Materials 18 (2019) 203, https://doi.org/10.1038/s41563-018-0275-2

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, (Dover Publications, New York, 1972).

G. Arfken and H. Weber, Mathematical Methods for Physicists, 6th ed. (Elsevier Academic Press, USA, 2005).

B.L. Van der Waerden, On the method of saddle points, Appi. Sci. Res. B 2 (1950) 33.

B.D. Fried and S.D. Conte, The Plasma Dispersion Function: The Hilbert transform of the Gaussian, (Academic Press, New York, 1961).

A. Ishimaru, Electromagnetic wave propagation, radiation and scattering, (Prentice Hall, Englewood Cliffs, New Jersey, 1991).

P. Baccarelli, P. Burghignoni, F. Frezza, F.A. Galli, G. Lovat and D.R. Jackson, Uniform analytical representation of the continuous spectrum excited by dipole sources in a multilayer dielectric structure through weighted cylindrical leaky waves, IEEE Transactions on Antennas and Propagation, 52 (2004) 653. https://doi.org/10.1109/TAP.2004.825099

R.E. Collin, Hertzian dipole radiating over a lossy earth or sea: Some early and late 20th-century controversies, IEEE Antennas and Propagation Magazine, 46 (2004) 64. https://doi.org/10.1109/MAP.2004.1305535.

Downloads

Published

2022-11-01

How to Cite

[1]
O. J. Franca and L. F. Urrutia, “Radiation from a dipole perpendicular to the interface between two planar semi-infinite magnetoelectric media”, Rev. Mex. Fís., vol. 68, no. 6 Nov-Dec, pp. 060701 1–, Nov. 2022.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory