Evaluation of an electrochemical cell 3D-printed with PLA/PTFE polymer filament

Authors

  • Alfredo Márquez-Herrera Departamento de Ingeniería Mecánica Agrícola, DICIVA, Universidad de Guanajuato, http://orcid.org/0000-0002-7660-3575
  • M. Zapata Torres CICATA-IPN
  • S. Montesinos Universidad Tecnológica de la Mixteca

DOI:

https://doi.org/10.31349/RevMexFis.68.041002

Abstract

3-dimensions (3D) printing technology is a type of additive manufacturing (AM) that is on the rise and works by manufacturing components by the deposition of a thermoplastic layer upon layer. In this paper, we explore the use of AM to print a novel fused deposition modeling-based 3D printing electrochemical cell from a non-commercially available composite of PLA/PTFE polymer filament for corrosion applications within materials science. To validate the 3D printed cell, a galvanic series and cyclic voltammetry to aluminum in Hank’s solution was done, and a corrosion resistance study was conducted by using the electrochemical impedance spectroscopy (EIS) and anodic and cathodic polarization (Tafel) techniques to a virgin and a boride ASTM F-73 alloy as working electrode. The results show the possibility of replacing commercial electrochemical cells with 3D printed ones without any compromise on quality of the experiment. Also, this inexpensive and simple instrument design is both, adaptable and sensitive for a wide range of laboratory electrochemical applications.

References

C. Alexandru-Polifron, B. Paul-Petru, R. Rradu-Iulian, and D. Liliana, "Aspects Regarding the Use of 3D Printing Technology and Composite Materials for Testing and Manufacturing Vertical Axis Wind Turbines", Mat. Plast. 56, 4, (2019), pp. 910-917. https://doi.org/10.37358/MP.19.4.5283

Y. Bozkurt, and E. Karayel, "3D printing technology; methods, biomedical applications, future opportunities and trends", Journal of Materials Research and Technology 14 (2021), pp.1430-1450. https://doi.org/10.1016/j.jmrt.2021.07.050

M. S. Thompson, "Current status and future roles of additives in 3D printing—A perspective", Vinyl Addit. Technol. 1 (2022).

https://doi.org/10.1002/vnl.21887

G. Kasap, Y. D. Gokdel, M. B. Yelten and O. Ferhanoglu, "Reliability Testing of 3D-Printed Polyamide Actuators," in IEEE Transactions on Device and Materials Reliability 20, 1 (2020), pp. 152-156. https://doi.org/10.1109/TDMR.2020.2966043.

A.L. Silva, S.G. Maia-Da-Silva, S.G., V.F. Castro-Silvia,M.F. Carvalho-Nakédia, and A. Munoz-Rodrigo "3D printer guide for the development and application of electrochemical cells and devices", Frontiers in Chemistry 9, (2021), pp. 1-19. https://doi.org/10.3389/fchem.2021.684256

A. Márquez-Herrera, "Extrusion parameters to obtain PLA/FTPE thermoplastic polymer filament", to be published.

F. León-Bello, and M. G. Amaya-Malpica, "Surface galvanic action on a carbon steel matrix microcell consisting on ferrite and pearlite grains", Revista Mexicana De Ingeniería Química 7 7, 1 (2020), pp. 29-33.

A. Gómez-Figueroa, "Evaluación de la protección a la corrosión en el acero de refuerzo implementando recubrimientos a base

de nanotubos de carbono adicionado con Zinc NTC-Zn como protección catódica", Thesis de Maestría en Construcción, Instituto Tecnológico de Chetumal, México.

A. Márquez-Herrera, and J. Moreno-Palmerin, "Corrosion resistance evaluation of boron-carbon coating on ASTM A-36 steel", Revista Mexicana de Física 68 (2022), pp. 1-6. https://doi.org/10.31349/RevMexFis.68.011001

K. C. Honeychurch, "13-Printed thick-film biosensors, In Woodhead Publishing Series in Electronic and Optical Material", Printed Films, Woodhead Publishing: Cambridge, UK. (pp. 366-409).

G. Chisholm, P. J. Kitaon, N. D. Kirkaldy, L. G. Bloor, and L. Cronin, "3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture", Energ. Environ. Sci. 7 (2014), pp. 3026-3032. https://doi.org/10.1039/C4EE01426J

E. Achilli, A. Minguzzi, A. Visible, C. Locatelli, A. Vertova, A. Naldoni, S. Rondinini, F. Auricchio, S. Marconi, M. Fracchia,

and P. Ghigna, "3D-printed photo-spectroelectrochemical devices for in situ and in operando X-ray absorption spectroscopy

investigation", J. Synchrotron. Radiat. 23 (2016), pp. 622-628, 2016, doi: https://doi.org/10.1107/S1600577515024480

G. W. Bishop, J. E. Satterwhite, S. Bhakta, K. Kadimesetty, K. M. Gillette, E. Chen, and J. F. Rusling, "3D printed fluidic devices for nanoparticle preparation and flow-injection amperometry using integrated Prussian Blue nanoparticlemodified electrodes", Anal. Chem. 87 (2015), pp. 5437-5443. https://doi.org/10.1021/acs.analchem.5b00903

C. P. De-León, W. Hussey, F. Frazao, D. Jones, E. Ruggeri, S. Tzortzatos, R. D. Mckerracher, R. G. A. Wills, S. Yang, and F. C. Walsh, "The 3D printing of a polymeric electrochemical cell body and its characterization", Chem. Eng. Trans 4 (2014), pp. 1-6, 2014.

E. Vaneckova, M. Bousa, F. Vivaldi, M. Gal, J. Rathousky, V. Kolivoska, and T. Sebechlebska, "UV/VIS spectroelectrochemistry with 3D printed electrodes", Journal of Electroanalytical Chemistry, 857, 15 (2020) , 113760. https://doi.org/10.1016/j.jelechem.2019.113760

R. M. Cardoso, D.M. H. Mendoca, W. P. Silva, M. N. T. Silva, E. Nossol, R. A. B. Da-Silva, E. M. Richter, and R. A. A. Munoz, "3D printing for electroanalysis: From multiuse electrochemical cells to sensors", Analytica Chimica Acta, 1033, 29 (2018), pp. 49-57. https://doi.org/10.1016/j.aca.2018.06.021

B. Schmind, D. King, and J. Kariuki, "Designing and Using 3D-Printed Components That Al-low Students To Fabricate

Low-Cost, Adaptable, Disposable, and Reliable Ag/AgCl Reference Electrodes", J. Chem. Educ. 95, 11 (2018), pp. 2076-2080. https://doi.org/10.1021/acs.jchemed.8b00512

H. García-Cruz, M. Jaime-Fonseca, E. Von Borries-Medrano, and H. Vieyra, "Extrusion parameters to produce a PLA-starch derived thermoplastic polymer", Revista Mexicana De Ingeniería Química 19, 1 (2020), pp. 395-412. https://doi.org/10.24275/rmiq/Poly1529

P. B. Michelle, U. Veronika, P. Jan, N. Filip, and P. Martin, "Inherent impurities in 3D-printed electrodes are responsible for catalysis towards water splitting", Journal of Materials Chemistry A. 8, 3 (2020), pp. 1120-1126. https://doi.org/10.1039/C9TA11949C

P. Alves-Ferrerira, F. Mendoca-De-Oliveira, E. I. De-Melo, A. Evasto-De-Carvalho, A. Valho, B. Gabriel-Lucca, V. Souza-Ferrerira, and R. A. Bezerra-Da-Silva, "Multi sensor compatible 3D-printed electrochemical cell for voltammetric drug screening", Analytica Chimica Acta 1169 (2021). https://doi.org/10.1016/j.aca.2021.338568

S. Teixeira, K. M. Eblagon, F. R. Miranda, M. F. Pereira, and J. L. Figueiredo, "To-wards controlled degradation of

Poly(lactic) Acid in technical applications", C 7 (2021), pp. 1-43. https://doi.org/10.3390/c7020042

F. Zuluaga, "Algunas aplicaciones del ácido poli-L-láctico", Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 37 (2013), pp. 125-142.

S. Lazzari, F. Codari, G. Storti, M. Morbidelli, and D. Moscatelli, "Modeling the pH-dependent PLA oligomer degradation kinetics". Polymer Degradation and Stability 110 (2014), pp. 80-90. https://doi.org/10.1016/j.polymdegradstab.2014.08.012

X. Lebo, C. Kaitlyn, and B. G. Christipher, "Effects of Temperature and pH on the Degradation of Poly(lactic acid) Brushes", Macromolecules 44 (2011), pp. 4777-4782. https://doi.org/10.1021/ma2000948

L. Yuechi, G. Meiyu, S. Dusita, F. Johannes, and B.S. Gleb, "pH dependent degradation properties of lactide based 3D microchamber arrays for sustained cargo release", Colloids and Surfaces B: Biointerfaces 188, vol. 188, pp. 1-8, 2020. https://doi.org/10.1016/j.colsurfb.2020.110826

A. Merkys, A. Vaitkus, J. Butkus, M. Okulic-Kazarinas, V. Kairys, and S. Grazulis, "COD::CIF::Parser: an error correcting CIF parser for the Perl language", Journal of Applied Crystallography, 49 (2016) pp. 292-301. https://doi.org/10.1107/s1600576715022396

G. Reade, G. Ottewill, and F. Walsh, "Understanding electrical and electrolytic conductivity", Trans. IMF. 78 (2000), pp.

-92.

H. M. Rietveld, "Line profiles of neutron powder-diffraction peaks for structure refinement", Acta Cryst. 22 (2007), pp. 151-

L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, H. R. Wenk, "Rietveld texture analysis from diffraction images", Z. Kristallogr. Suppl. 26 (2007), pp. 125-130.https://doi.org/10.1524/9783486992540-020

I. Campos-Silva, D. Bravo-Bárcenas, A. Meneses-Amador, M. Ortiz-Domínguez, H Cimenoglu, U. FigueroaLópez, and J. Andraca-Adame, "Growth kinetics and mechanical properties of boride layers formed at the surface of the ASTM F-75 biomedical alloy ", Surface & Coatings Technology 237, 25 (2013), pp. 402-414. https://doi.org/10.1016/j.surfcoat.2013.06.083

M. Dong, and S. Bao-luo, "Oxidation resistance of boronized CoCrMo alloy", International Journal of Refractory Metals and Hard Materials, 28, 3 (2010), pp. 424-428.https://doi.org/10.1016/j.ijrmhm.2010.01.003

J. M. Johnston, M. Jubinsky, and S. A. Catledge, "Plasma boriding of a cobalt-chromium alloy as an interlayer for nanostructured diamond growth", Applied Surface Science 328, 15, (2015) pp. 133-139. https://doi.org/10.1016/j.apsusc.2014.11.129

M. Dong, S. Bao-luo, and Z. Xin, "Effects of boronizing on mechanical and dry-sliding wear properties of CoCrMo alloy", Materials and Design, 31, 8 (2010), pp. 3933-3936. https://doi.org/10.1016/j.matdes.2010.03.024

M. Metikos-Hukovic, Z. Pilic, R. Babic, and D. Omanovic, "Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank’s solution", Acta Biomaterialia 2, 6 (2006), pp. 693-700, 2006. https://doi.org/10.1016/j.actbio.2006.06.002

I. Campos-Silva, D. Bravo-Bárcenas, H. Cimenoglu, U. Figueroa-López, M., Flores-Jiménez, and O. Meydanoglu, "The boriding process in CoCrMo alloy: Fracture toughness in cobalt boride coatings", Surface & Coatings Technology 260, 15 (2014), pp. 362-368.

https://doi.org/10.1016/j.surfcoat.2014.07.092

G. A. Rodríguez-Castro, C. D. Reséndiz-Calderon, L.F. Jiménez-Tinoco, A. Meneses-Amador, E.A. Gallardo-Hernández, and I. E. Campos-Silva, "Micro-abrasive wear resistance of CoB/Co2B coatings formed in CoCrMo alloy", Surface & Coatings Technology 284, 25 (2015), pp. 258-263. https://doi.org/10.1016/j.surfcoat.2015.06.081

J. L. Arguelles-Ojeda, J. Palmerin, A. Saldana-Robles, M. Corona-Rivera, M. Zapata-Torres, and A. Márquez-Herrera, "Corrosion behavior of boride diffusion layer on CoCrMo alloy Surface", Indian Journal of Engineering and Materials Sciences 27, 1 (2020), pp. 87-95.

Downloads

Published

2022-06-07

How to Cite

[1]
A. Márquez-Herrera, M. Zapata Torres, and S. Montesinos, “Evaluation of an electrochemical cell 3D-printed with PLA/PTFE polymer filament”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 041002 1–, Jun. 2022.