Generalized equations and their solutions in the (1/2,0)+(0,1/2) representations of the Lorentz group

Authors

  • J. A. Cázares Ventspils University of Appliend Sciences
  • Valeriy Dvoeglazov Universidad de Zacatecas

DOI:

https://doi.org/10.31349/RevMexFis.69.050703

Keywords:

Relativistic quantum mechanics; spin-1/2; Dirac-Feynman-Stueckelberg

Abstract

We present explicit examples of generalizations in relativistic quantum mechanics. First of all, we discuss the generalized spin-1/2 equations for neutrinos. They have been obtained by means of the Gersten-Sakurai method for derivations of arbitrary-spin relativistic equations. Possible physical consequences are discussed. Next, it is easy to check that both Dirac algebraic equations Det(ˆp − m) = 0 and Det(ˆp + m) = 0 for u− and v− 4-spinors have solutions with p0 = ±Ep = ± p p2 + m2. The same is true for higher-spin equations. Meanwhile, every book considers the equality p0 = Ep for both u− and v− spinors of the (1/2, 0) ⊕ (0, 1/2) representation, thus applying the DiracFeynman-Stueckelberg procedure for elimination of the negative-energy solutions. The recent Ziino works (and, independently, the articles of several others) show that the Fock space can be doubled. We re-consider this possibility on the quantum field level for both S = 1/2 and higher spin particles. The third example is: we postulate the non-commutativity of 4-momenta, and we derive the mass splitting in the Dirac equation. The applications are discussed.

Author Biography

Valeriy Dvoeglazov, Universidad de Zacatecas

UAF, Profesor Titular C

References

P.A.M. Dirac, The Quantum Theory of the Electron, Proc. Roy. Soc. Lond. A 117 (1928) 610, https://doi.org/10.1098/rspa.1928.0023

S. Weinberg, The Quantum Field Theory of Fields, Volume 1: Foundations. (Cambridge University Press, Cambridge, 1995)

L.H. Ryder, Quantum Field Theory. (Cambridge University Press, Cambridge,1985)

A. Pais, Inward Bound of Matter and Forces in the Physical World. (Oxford University Press, Oxford, 1988)

F. Close, Half-life: The Divided Life of Bruno Pontecorvo, Physicist or Spy. (Basic Books, New York, 2015)

D. Griffiths, Introduction to elementary particles. (Wiley, 1987)

B.M. Pontekorvo, ZhETF 37 (1959) 1236 [B.M. Pontecorvo, Electron and Muon Neutrinos, Sov. Phys JETP 10 (1960) 1751]

E. Majorana, Teoria simmetrica dell’elettrone e del positrone, Nuovo Cim. 14 (1937) 171, https://doi.org/10. 1007/BF02961314

S.M. Bilenky and B. Pontecorvo, Lepton mixing and Neutrino oscillations, Phys. Report 41 (1978) 225, https://doi.org/10.1016/0370-1573(78)90095-9

S. Eliezer and D.A. Ross, A “Cabbibo” theory for leptons and the neutrino masses, Phys. Rev. D 10 (1974) 3088, https://doi.org/10.1103/PhysRevD.10.3088; S.M. Bilenky and B. Pontecorvo, Quark-lepton analogy and neutrino oscillations, Phys. Lett. B 61 (1976) 248, https://doi.org/10.1016/0370-2693(76)90141-6

V. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493, https://doi.org/10.1016/0370-2693(69)90525-5

A. Gersten, Maxwell’s equations as the One-Photon Quantum Equation, Found. Phys. Lett. 12 (1991) 291, https://doi.org/10.1023/A:1021648704289; Quantum Equations for massless particles of any spin, ibid. 13 (2000) 185, https://doi.org/10.1023/A:1007835617598

J.J. Sakurai, Advanced Quantum Mechanics. (Addison-Wesley, 1967) §3.2. 14. Z. Tokuoka, A Proposal of Neutrino Equation, Prog, Theor. Phys. 37 (1967) 603, https://doi.org/10.1143/PTP.37.603; N.D.S. Gupta, The wave equation for zero rest-mass particles, Nucl. Phys. B 4 (1967) 147, https://doi.org/10.1016/0550-3213(67)90201-5; T.S. Santhanam and P.S. Chandrasekaran, Clifford Algebra and Massless Particles, Prog. Theor. Phys. 41 (1969) 264, https://doi.org/10.1143/PTP.41.264; V.I. Fushchich, On the P- and T- non-invariant two component equation for the neutrino, Nucl. Phys. B 21 (1970) 321, https://doi.org/10.1016/0550-3213(70)90523-7; V.I. Fushchich, On the three types of relativistic equations for particles with nonzero mass, Lett. Nuovo Cim. 4 (1972) 344, https://doi.org/10.1007/BF02756531; V.I. Fushchich and A.L. Grishchenko, On the CPnoninvariant equations for the particle with zero mass and spins = 1/2, Lett. Nuovo Cim. (1969-1970) 4 (1970) 927, https://doi.org/10.1007/BF02755181; M.T. Simon, On relativistic wave equations for massless particles of spin 1/2, Lett. Nuovo Cim. 2 (1971) 616, https://doi.org/10.1007/BF02780680; T.S. Santhanam and A.R. Tekumalla, Relativistic wave equations describing the neutrino, Lett. Nuovo Cim. 3 (1972) 190, https://doi.org/10.1007/BF02772868

A. Raspini, The physical neutrino current from a duality transformation, Int. J. Theor. Phys. 33 (1994) 1503, https://doi.org/10.1007/BF00670692; Dirac equation with two mass parameters Fizika B 5 (1996) 159; Modified massless Dirac equation ibid. 6 (1997) 123; Could neutrino flavours be superpositions of massive, massless and tachyonic states? ibid. 7 (1998) 83

A. Raspini, A Review of Some Alternative Descriptions of Neutrino. In: V.V. Dvoeglazov (Ed.) Photon and Poincare Group. Series Contemporary Fundamental Physics (Commack, NY: Nova Science,1999) 181-188

V.V. Dvoeglazov, Generalized Maxwell equations from the Einstein postulate, J. Phys. A: Math. Gen. 33 (2000) 5011, https://doi.org/10.1088/0305-4470/33/28/305

V.V. Dvoeglazov, Neutral particles in light of the MajoranaAhluwalia ideas, Int. J. Theor. Phys. 34 (1995) 2467, https://doi.org/10.1007/BF00670779; The Second-Order Equation from the (1/2, 0) ⊕ (0, 1/2) Representation of the Poincare Group, ibid. 37 (1998) 1909, https://doi.org/10.1023/A:1026613213251; Extra Dirac equations, Nuovo Cim. B 111 (1996) 483, https://doi.org/10.1007/BF02724557; Lagrangian for the MajoranaAhluwalia construct, Nuovo Cim. A 108 (1995) 1467, https://doi.org/10.1007/BF02821063; Self/antiself charge conjugate states for j = 1/2 and j = 1, Hadronic J. 20 (1997) 435; Significance of the spinorial basis in relativistic quantum mechanics, Fizika B 6 (1997) 111; Majoranalike models in the physics of neutral particles, Adv. Appl. Clifford Algebras 7(C) (1997) 303; Unusual interactions of (1/2, 0) ⊕ (0, 1/2) particles, ibid. 9 (1999) 231, https://doi.org/10.1007/BF03042378; Gauge transformtions for self/anti-self charge conjugate states, Acta Physica Polon. B 29 (1998) 619; Addendum to “the relativistic covariance of the B-cyclic relations, Found. Phys. Lett. 13 (2000) 387, https://doi.org/10.1023/A:1007827829072

D.V. Ahluwalia, Theory of neutral particles: McLennanCase construct for neutrino, its generalization, and a new wave equation, Int. J Mod. Phys. A 11 (1996) 1855, https://doi.org/10.1142/S0217751X96000973; Nonlocality and gravity-induced CP violation, Mod. Phys. Lett. A 13 (1998) 3123, https://doi.org/10.1142/S0217732398003326

V.V. Dvoeglazov, Normalization and the m → 0 limit of the Proca theory, Czech. J. Phys. 50 (2000) 225, https://doi.org/10.1023/A:1022895923841; Longitudinal Nature of Antisymmetric Tensor Field after Quantization and Importance of the Normalization. In: V.V. Dvoeglazov (Ed.) Photon: Old Problems in Light of New Ideas. Series Contemporary Fundamental Physics (Huntington, NY: Nova Science Publishers, 2000), 319-337

C. Itzykson and J.B. Zuber, Quantum Field Theory. (McGrawHill Book Co, 1980), 156. 22. N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields. 2nd ed. (Nauka, Moscow. 1973). 23. V.V. Dvoeglazov, Antisymmetric tensor fields, 4-potentials and indefinite metrics, Hadronic J. Suppl. 18 (2003) 239 (2003), https://arxiv.org/abs/physics/0402094; 4-vector fields and indefinite metrics, Int. J. Mod. Phys. B 20 (2006) 1317, https://doi.org/10.1142/S0217979206033954

V.V. Dvoeglazov, The Construction of Field Operators, J. Phys. Conf. Ser. 284 (2011) 012024, https://doi.org/10.1088/1742-6596/284/1/012024

M.A. Markov, ZhETF 7 (1937) 579; ibid. 7 (1937) 603; Difference between muon and electron masses: Two types of Dirac fields, Nucl. Phys. 55 (1964) 130, https://doi.org/10.1016/0029-5582(64)90133-6

A.O. Barut and G. Ziino, On parity conservation and the question of the ‘missing’ (right-handed) neutrino, Mod. Phys. Lett. A 8 (1993) 1099, https://doi.org/10.1142/S021773239300249X; G. Ziino, Fermion quantum field theory with a new gauge symmetry, related to a pseudoscalarconserved-charge variety, Int. J. Mod. Phys. A 11 (1996) 2081, https://doi.org/10.1142/S0217751X9600105X

I.M. Gelfand and M.L. Tsetlin, On quantities with anomalous parity, ZhETF 31 (1956) 1107; G.A. Sokolik, Interpretation of an “Anomalous” representation of the inversion group, ZhETF 33 (1958) 1515

M. Kirchbach, C. Compean and L. Noriega, Beta decays with momentum space Majorana spinors, Eur. Phys. J. A 22 (2004) 149, https://doi.org/10.1140/epja/i2003-10230-0

V.V. Dvoeglazov, Quantized (1, 0) ⊕ (0, 1) fields, Int. J. Theor. Phys. 37 (1998) 1915, https://doi.org/10.1023/A: 1026665230089

H. Snyder, Quantized Space-Time, Phys. Rev. 71 (1947) 38, https://doi.org/10.1103/PhysRev.71.38

V.V. Dvoeglazov, Generalized Maxwell and Weyl Equations for Massless Particles, Rev. Mex. Fis. Supl. 49 (2003) 99. In: Proceedings of the DGFM-SMF School, Huatulco, 2000.

F.J. Dyson, Feynman’s proof of the Maxwell equations, Am. J. Phys. 58 (1990), 209, https://doi.org/10.1119/1.16188; R.J. Hughes, On Feynman’s proof of the Maxwell equations, ibid. 60 (1992) 301, https://doi.org/10. 1119/1.16921

V.V. Dvoeglazov, A note on noncommutativity, Phys. Essays 31 (2018) 340; Question on iterated limits in relativity, ibid. 31 (2018) 409

R.A. Berg, General spin equations in two-component and Dirac-like form, Nuovo Cimento A (1965-1970) 42 (1966) 148 (1966), https://doi.org/10.1007/BF02856200

Downloads

Published

2023-09-01

How to Cite

[1]
J. A. Cázares and V. Dvoeglazov, “Generalized equations and their solutions in the (1/2,0)+(0,1/2) representations of the Lorentz group”, Rev. Mex. Fís., vol. 69, no. 5 Sep-Oct, pp. 050703 1–, Sep. 2023.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory