Structural, electronic and optical properties of the wide band gap semiconductors KGaQ2 (Q = S, Se) and of AGaTe2 (A = K, Cs)

Authors

  • N. Benmekideche University of Bordj Bou-Arreridj
  • Sabah Fetah University of msila Algeria
  • Gh. Belgoumri University of Bordj Bou-Arreridj
  • A. Bentabet University of Bordj Bou-Arreridj
  • A. Benmakhlouf University of Bordj Bou-Arreridj

DOI:

https://doi.org/10.31349/RevMexFis.68.061003

Keywords:

Density functional theory; GGA-PBE; HSE06; KGaQ2 (Q = S, Se); AGaTe2 (A = K, Cs); electronic properties; Optical constantes.

Abstract

In this paper, we studied the structural, electronic and some optical properties of KGaQ2 (Q = S, Se) and AGaTe2 (A = K, Cs) crystals using the pseudopotential plane-wave (PP-PW) method based on density functional theory (DFT), the generalized gradient approximation (GGA) parameterized by Perdew-Burke-Ernzerhof (GGA-PBE) is used for the exchange – correlation (XC) potential. We also use the hybrid density functional (HSE06) to study the electronic structures of these materials. Our results for the equilibrium lattice constants (a, b and c), angle β are in good agreement with experiment data. The electronic structure calculation suggested that crystals are direct-gap semiconductors, employing both the Perdew–Burke–Ernzerhof (PBE) and the hybrid (HSE06) functionals. We note that the hybrid density functional improved the value of band gap, and that the studied compounds are semiconductors with wide band gaps.  We have also predicted the optical properties; the refractive index, the reflection coefficient and dielectric constant on high frequencies.

References

J. Kim and T. Hughbanks Synthesis and structures of ternary chalcogenides of aluminum and gallium with stacking faults: KMQ2 (M=Al,Ga; Q=Se,Te), Journal of Solid State Chemistry 149 (2000) 242. https://doi.org/10.1006/jssc.1999.8523.

K. Feng, D. Mei, L. Bai, Z. Lin, J. Yao and Y. Wu Synthesis, structure, physical properties and electronic structure of KGaSe2, Solid state sciences 14 (2012) 1152. https://doi.org/10.1016/j. solidstatesciences.2012.05.028

J. Weis, H. Schäfer and G. Schön, New ternary element (I)/element (III)-tellurides and selenides, Z. Naturforsch. B, 31 (1976) 1336. https://doi.org/10.1515/znb-1976-1008

P. Lemoine, D. Carré and M. Guittard, Structure du sulfure de gallium et de potassium KGaS2, Acta Crystallographica Section C: Crystal Structure Communications 40 (1984) 910. https://doi.org/10.1107/S0108270184006223

E. Wu, M. Pell, T. Fuelberth, and J. Ibers, Crystal structure of caesium gallium ditelluride, CsGaTe2, Zeitschrift fu Kristallographie-New Crystal Structures ¨ 212 (1997) 91. https://doi.org/10.1524/ncrs.1997.212.jg.91

D. Friedrich, M. Schlosser, M. Etter, and A. Pfitzner, Influence of Alkali Metal Substitution on the Phase Transition Behavior of CsGaQ2 (Q= S, Se), Crystals 7 (2017) 379. https://doi.org/10.3390/cryst7120379

S. Clark et al., First principles methods using CASTEP, Zeitschrift fü Kristallographie-Crystalline Materials 220 (2005) 567. https://doi.org/10.1524/zkri.220.5.567.65075

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865

D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical review B 41 (1990) 7892, [Erratum Phys. Rev. Lett. 78 (1997) 1396], https://doi.org/10.1103/PhysRevB.41.7892

T. H. Fischer and J. Almlof, General methods for geometry and wave function optimization, The Journal of Physical Chemistry 96 (1992) 9768. https://doi.org/10.1021/j100203a036

H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B 13 (1976) 5188. https://doi.org/10.1103/PhysRevB.13.5188

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125 (2006) 224106, https://doi.org/10.1063/1.2404663

N. M. Ravindra, S. Auluck, V. K. Srivastava, On the Penn gap in semiconductors, Physica status solidi (b) 93 (1979) K155, https://doi.org/10.1002/pssb.2220930257

T. S. Moss, Relations between the refractive index and energy gap of semiconductors, physica status solidi (b) 131 (1985) 415. https://doi.org/10.1002/pssb.2221310202

P. J. L. Herve and L. K. J. Vandamme, Empirical temperature dependence of the refractive index of semiconductors, Journal of Applied Physics 77 (1995) 5476. https://doi.org/10.1063/1.359248

A. Alkauskas, P. Broqvist and A. Pasquarello, Defect levels through hybrid density functionals: Insights and applications, Physica status solidi (b) 248 (2011) 775. https://doi.org/10.1002/pssb.201046195

S. Kümel, and L. Kronik, Orbital-dependent density functionals: Theory and applications, Rev. Mod. Phys. 80 (2008) 3. https://doi.org/10.1103/RevModPhys.80.3

A. D. Becke, A new mixing of Hartree Fock and local density functional theories, J. Chem. Phys. 98 (1993) 1372. https://doi.org/10.1063/1.464304

C. Mietze et al., Band offsets in cubic GaN/AlN superlattices, Phys. Rev. B 83 (2011) 195301. https://doi.org/10.1103/PhysRevB.83.195301

J. Heyd, G. E. Scuseria and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207. https://doi.org/10.1063/1.1564060

M. Landmann et al., Transition energies and direct-indirect band gap crossing in zinc-blende AlxGa1-xN, Phys. Rev. B 87 (2013) 195210. https://doi.org/10.1103/PhysRevB.87.195210

J. Heyd, J. E. Peralta G. E. Scuseria and R. L. Martin, Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional, J. Chem. Phys. 123 (2005) 174101. https://doi.org/10.1063/1.2085170

J. Paier et al., Screened hybrid density functionals applied to solids, J. Chem. Phys. 124 (2006) 154709. https://doi.org/10.1063/1.2187006

M. Marsman, J. Paier, A. Stroppa and G. Kresse, Hybrid functionals applied to extended systems, Journal of Physics: Condensed Matter 20 (2008) 064201. https://doi.org/10.1088/0953-8984/20/6/064201

V. L. Shaposhnikov, A. V. Krivosheeva, V. E. Borisenko, J.-L. Lazzari, and F. Arnaud, d’Avitaya, Ab initio modeling of the structural, electronic, and optical properties of A II B IV C 2 V semiconductors, Phys. Rev. B 85 (2012) 205201. https://doi.org/10.1103/PhysRevB.85.205201

L. Tang, M. Lee, C. Yang, J. Y. Huang, and C. Chang, Cation substitution effects on structural, electronic and optical properties of nonlinear optical AgGa(SxSe1-x)2 crystals, Journal of Physics: Condensed Matter 15 (2003) 6043. https://doi.org/10.1088/0953-8984/15/35/312

N. M. Ravindra, P. Ganapathy and J. Choi, Energy gap refractive index relations in semiconductors-An overview, Infrared physics and technology 50 (2007) 21. https://doi.org/10.1016/j.infrared.2006.04.001.

Downloads

Published

2022-11-01

How to Cite

[1]
N. Benmekideche, S. Fetah, G. Belgoumri, A. Bentabet, and A. Benmakhlouf, “Structural, electronic and optical properties of the wide band gap semiconductors KGaQ2 (Q = S, Se) and of AGaTe2 (A = K, Cs)”, Rev. Mex. Fís., vol. 68, no. 6 Nov-Dec, pp. 061003 1–, Nov. 2022.