Artificial neural network for the single-particle localization problem in quasiperiodic one-dimensional lattices


  • Gustavo Alexis Dominguez Castro Institute of Physics, UNAM
  • Rosario Paredes Gutiérrez



Localization, Machine-Learning, Quasicrystals


The use of machine learning algorithms to address classification problems in several scientific branches has increased over the past years. In particular, the supervised learning technique with artificial neural networks has been successfully employed in classifying phases of matter. In this article, we use a fully connected feed-forward neural network to classify extended and localized single-particle states that arise from quasiperiodic one-dimensional lattices. We demonstrate that our neural network achieves to correctly uncover the nature of the single-particle states even when the wave functions come from a more complex Hamiltonian than the one used to train the network.


L. D. Landau, On the theory of phase transitions, Zh. Eksp. Teor. Fiz. 7 (1937) 19-32

P. Coleman, Introduction to Many-Body Physics, (Cambridge University Press, Cambridge, 2015)

G. Mahan, Many-Particle Physics, (Kluwer Academic/Plenum Publishers, New York, 2000)

A. Auerbach, Interacting Electrons and Quantum Magnetism, (Springer-Verlag, New York, 1994)

N. Majlis, Quantum Theory of Magnetism, (World Scientific, Singapur, 2000)

D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium: Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91 (2019) 021001.

A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman, S. Choi, V. Khemani, J. Leonard, and M. Greiner, Probing entanglement in a many-body-localized system, Science 364 (2019) 256-260.

W. Zwerger, The BCS-BEC Crossover and the Unitary Fermi Gas, (Springer-Verlag, Heidelberg, 2012)

J. C. Obeso-Jureidini and V. Romero-Roch´ın, Spatial structure of the pair wave function and the density correlation functions throughout the BEC-BCS crossover, Phys. Rev. A 101 (2020) 033619.

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49 (1982) 405.

F. D. M. Haldane, Nobel lecture: topological quantum matter, Rev. Mod. Phys. 89 (2017) 040502.

J. Cayssol and J. N. Fuchs, Topological and geometrical aspects of band theory, J. Phys. Mater. 4 (2021) 0340007.

J. Carrasquilla, Machine learning for quantum matter, Advances in Physics: X 5 (2020) 1797528.

P. Mehta, M. Bukov, Ching-Hao, A. G. R. Day, C. Richardson, C. K. Fisher, and D. J. Schwab, A high-bias, low variance introduction to machine learning for physicists, Physics Reports 810 (2019) 1-124.

J. Krohn, Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence, (Addison-Wesley Professional, Massachusetts, 2019)

J. Carrasquilla and G. Torlai, How to use neural networks to investigate quantum many-body physics, PRX Quantum 2 (2021) 040201.

S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, and G. Ceder, Predicting crystal structures with data mining of quantum calculations, Phys. Rev. Lett. 91 (2003) 135503.

L.-F. Arsenault, A. Lopez-Bezanilla, O. A. von Lilienfeld, and A. Millis, Machine learning for many-body physics: the case of the Anderson impurity model, Phys. Rev. B 90 (2014) 155136.

J. Carrasquilla and R. G. Melko, Machine learning phases of matter, Nature Physics 13 (2017) 431-434.

O. S. Ovchinnikov, S. Jesse, P. Bintacchit, S. TrolierMcKinstry, and S. V. Kalinin, Disorder identification in hysteresis data: recognition analysis of the random-bond-randomfield Ising model, Phys. Rev. Lett. 103 (2009) 157203.

L. Wang, Discovering phase transitions with unsupervised learning, Phys. Rev. B 94 (2016) 195105.

K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, Machine learning phases of strongly correlated fermions, Phys. Rev. X 7 (2017) 031038.

B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Fläschner, C. Becker, K. Sengstock, and C. Weitenberg, Identifying quantum phase transitions using artificial neural networks on experimental data, Nature Physics 15 (2019) 917-920.

M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G. Melko, and J. Carrasquilla, Recurrent neural network wave functions, Phys. Rev. Research 2 (2020) 023358.

F. Kotthoff, F. Pollmann, and G. De Tomasi, Distinguishing an Anderson insulator from a many-body localized phase through space-time snapshots with neural networks, Phys. Rev. B 104 (2021) 224307.

S. Aubry and G. Andre, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Israel Phys. Soc. 3 (1980) 133

G. A. Domınguez-Castro and R. Paredes, The Aubry-Andre model as a hobbyhorse for understanding the localization phenomenon, Eur. J. Phys. 40 (2019) 045403.

P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958) 1492.

M. Wilkinson, Critical properties of electron eigenstates in incommensurate systems, Proc. R. Soc. Lond. A 391 (1984) 305.

J. Biddle, B. Wang, D. J. Priour, Jr., and S. Das Sarma, Localization in one-dimensional incommensurate lattices beyond the Aubry-Andre model, Phys. Rev. A 80 (2009) 021603(R). 80.021603

D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,

M. Abadi, et al., TensorFlow: Large-scale machine learning on heterogeneous distributed systems,




How to Cite

G. A. Dominguez Castro and R. . Paredes Gutiérrez, “Artificial neural network for the single-particle localization problem in quasiperiodic one-dimensional lattices”, Rev. Mex. Fís., vol. 69, no. 2 Mar-Apr, pp. 020502 1–, Mar. 2023.