In plane magnetic field and intense laser field effects on second harmonic generation of asymmetric AlGaAs/GaAs double quantum well

Authors

  • Jimena Pérez Gonzalez Universidad Autonoma de Zacatecas
  • José Guadalupe Rojas Briseño Universidad Autonoma de Zacatecas
  • Flavio Manuel Nava Maldonado Universisdad Autónoma de Zacatecas
  • Antonio Del Rio De Santiago Universidad Autonoma de Zacatecas
  • Fatih Ungan Sivas Cumhuriyet University
  • Hassen Dakhlaoui Abdulrahman Bin Faisal University
  • J.C. Martinez-Orozco Universidad Autonoma de Zacatecas

DOI:

https://doi.org/10.31349/RevMexFis.68.050503

Keywords:

Double quantum wells, Second Harmonic Generation, Intraband transitions, Intense laser field effect

Abstract

The optical properties for nano-structured semiconductor systems are of great importance nowadays, due to its possible implementation for the design of efficient optoelectronic devices. It is also well known that external fields can modify the electronic structure, and induce changes the optical properties as well. In particular the asymmetric double quantum well structures are of paramount importance because its wide range on possible configurations and also because are experimentally feasible and well controlled, particularly AlxGa1-xAs/GaAs heterostructures. In this work we report a systematic study on second harmonic generation (SHG) for an asymmetric AlxGa1-xAs/GaAs double quantum well as a function of non-resonant intense laser field and  in-plane magnetic field effect. We analyze the energy level behavior as well as the dipole matrix elements as a function of the above mentioned factors that are important for the SHG. We report a particular configuration that optimize the SHG peak, with and without intense laser field effect, as well as magnetic fields, that also tune the SHG.

References

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich. Generation of Optical Harmonics. Phys. Rev. Lett. 7 (1961) 118.

Robert W. Boyd. Nonlinear Optics, Third Edition. Academic Press, Inc., USA, 3rd edition, 2008.

E. Rosencher and Ph. Bois. Model system for optical nonlinearities: Asymmetric quantum wells. Phys. Rev. B, 44 (1991) 11315.

P. Boucaud, F. H. Julien, D. D. Yang, J-M. Lourtioz, E. Rosencher, P. Bois, and J. Nagle. Detailed analysis of second-harmonic generation near 10.6µm in GaAs/AlGaAs asymmetric quantum wells. Appl. Phys. Lett., 57 (1990) 215.

E. Kasapoglu, C.A. Duque, M.E. Mora-Ramos, R.L. Restrepo, F. Ungan, U. Yesilgul, H. Sari, and I. Sokmen. Combined ¨ effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well. Mater. Chem. Phys., 154 (2015)170.

H. Yildirim and M. Tomak. Optical absorption of a quantum well with an adjustable asymmetry. Eur. Phys. J. B., 50 (2006) 559.

A. Rostami, H. Baghban Asghari Nejad, and H. Rasooli Saghai. Highly enhanced second-order nonlinear susceptibilities in tailored GaN–AlGaN–AlN quantum well structures. Physica B, 403 (2008) 2725.

Xin Liu, LiLi Zou, Chenglin Liu, Zhi-Hai Zhang, and Jian-Hui Yuan. The nonlinear optical rectification and second harmonic generation in asymmetrical Gaussian potential quantum well: Effects of hydrostatic pressure, temperature and magnetic field. Opt. Mater., 53 (2016) 218.

F.M. Nava-Maldonado, J.G. Rojas-Briseño, J.C. MartínezOrozco, and M.E. Mora-Ramos. Strain effects in the absorption coefficient and relative refractive index change in double asymmetric AlxGa1−xN/GaN quantum wells. Physica E, 111 (2019) 134.

Raktim Sarma, Domenico de Ceglia, Nishant Nookala, Maria A. Vincenti, Salvatore Campione, Omri Wolf, Michael Scalora, Michael B. Sinclair, Mikhail A. Belkin, and Igal Brener. Broadband and Efficient Second-Harmonic Generation from a Hybrid Dielectric Metasurface/Semiconductor Quantum-Well Structure. ACS Photonics, 6 (2019) 1458.

Sofia Evangelou. Nonlinear optical absorption coefficient and refractive index change in symmetric semiconductor nanostructures: Comparison between different methods. Physica E, 124 (2020) 114307.

J C Martínez-Orozco, F Ungan, and K A RodríguezMagdaleno. Studies on the nonlinear optical properties of twostep GaAs/Ga1−xAlxAs quantum well. Phys. Scr., 95 (2020) 035802.

B. G. Enders, F. M. S. Lima, O. A. C. Nunes, A. L. A. Fonseca, D. A. Agrello, Fanyao Qu, E. F. Da Silva, and V. N. Freire. Electronic properties of a quasi-two-dimensional electron gas in semiconductor quantum wells under intense laser fields. Phys. Rev. B, 70 (2004) 035307.

F. M. S. Lima, M. A. Amato, O. A. C. Nunes, A. L. A. Fonseca, B. G. Enders, and E. F. da Silva. Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well. J. Appl. Phys., 105 (2009) 123111.

E. Kasapoglu, C. A. Duque, H. Sari, and I. Sokmen. Intense ¨ laser field effects on the linear and nonlinear intersubband optical properties of a semi-parabolic quantum well. Eur. Phy. J. B, 82 (2011) 13.

C. A. Duque, M. E. Mora-Ramos, E. Kasapoglu, H. Sari, and I. Sokmen. Combined effects of intense laser field and applied ¨ electric field on exciton states in GaAs quantum wells: Transition from the single to double quantum well. phys. status solidi B, 249 (2012) 118.

E.C. Niculescu, L.M. Burileanu, and A. Radu. Density of impurity states of shallow donors in a quantum well under intense laser field. Superlattice. Microst., 44 (2008) 173.

M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, and I. Sokmen. Electron–related nonlinearities in GaAs- ¨ Ga1−xAlxAs double quantum wells under the effects of intense laser field and applied electric field. J. Lumin., 135 (2013) 301.

M.J. Karimi and H. Vafaei. Intense laser field effects on the linear and nonlinear intersubband optical properties in a strained InGaN/GaN quantum well. Physica B, 452 (2014) 131.

J.C. Martínez-Orozco, J.G. Rojas-Briseño, K.A. RodríguezMagdaleno, I. Rodr´ıguez-Vargas, M.E. Mora-Ramos, R.L. Restrepo, F. Ungan, E. Kasapoglu, and C.A. Duque. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells. Physica B, 525 (2017) 30.

U. Yesilgul, H. Sari, F. Ungan, J.C. Martíınez-Orozco, R.L. Restrepo, M.E. Mora-Ramos, C.A. Duque, and I. Sokmen. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field. Chem. Phys., 81 (2017) 485.

A. Fiore, E. Rosencher, V. Berger, and J. Nagle. Electric field induced interband second harmonic generation in GaAs/AlGaAs quantum wells. Appl. Phys. Lett., 67 (1995) 3765.

Imen Saidi. Single- and double-resonant enhancement of second-harmonic generation in asymmetric AlGaN/GaN/AlGaN quantum well heterostructures. J. Appl. Phys., 125 (2019) 185702.

Liangcheng Zhang, Xuechao Li, Xinge Liu, and Zirui Li. The influence of second-harmonic generation under the external electric field and magnetic field of parabolic quantum dots. Physica B, 618 (2021) 413197.

Neda Nouri and Mahdi Zavvari. Second-Harmonic Generation in III-Nitride Quantum Wells Enhanced by Metamaterials. IEEE Photon. Technol. Lett., 28 (2016) 2199.

M.J. Karimi and H. Vafaei. Second-order nonlinear optical properties in a strained InGaN/AlGaN quantum well under the intense laser field. Superlattice. Microst., 78 (2015) 1.

Kun-Ching Shen, Yi-Teng Huang, Tsung Lin Chung, Ming Lun Tseng, Wei-Yi Tsai, Greg Sun, and Din Ping Tsai. Giant Efficiency of Visible Second-Harmonic Light by an All-Dielectric Multiple-Quantum-Well Metasurface. Phys. Rev. Appl. 12 (2019) 064056.

Chris G. Van de Walle. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B, 39 (1989) 1871. 29. Peng Zhang, Yanrong Song, Jinrong Tian, Xinping Zhang, and Zhigang Zhang. Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers. J. Appl. Phys. 105 (2009) 053103.

Downloads

Published

2022-08-18

How to Cite

[1]
J. Pérez Gonzalez, “In plane magnetic field and intense laser field effects on second harmonic generation of asymmetric AlGaAs/GaAs double quantum well”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 050503 1–, Aug. 2022.