A novel theoretical study of elastic and electronic properties of Os2YAl, (Y=Sc, Ti, V) Heusler Alloys


  • Lakhdar Taouaf Centre Universitaire Nour Bachir El Bayadh, 32000 El Bayadh, Algeria.
  • Moued Mebrek Centre Universitaire Nour Bachir El Bayadh, 32000 El Bayadh, Algeria.
  • Mohammed Sofiane bendelhoum Centre Universitaire Nour Bachir El Bayadh, 32000 El Bayadh, Algeria.
  • Mohamed Berber http://orcid.org/0000-0003-1285-3070




Full- Heusler alloy; metallic; Ab-Initio Calculations.


In this study, we have investigated the structural, electronic, and elastic properties of a new series of Os2YAl, (Y=Sc, Ti, V) alloys called "Full Heusler", based on the Wien2k code using the functional density theory (DFT). The exchange and correlation energy are evaluated as part of the LDA approximation.  The results showed that Os2VAl was more stable and harder than Os2ScAl, and Os2TiAl. The electronic band structures and density of states (DOS) of the compounds indicate that they are metallic because there is no bandgap in these three materials these results have been shown by three approaches (LDA, TB-mBJ, and SOC). Near the Fermi level, the energy is mainly occupied by the Os-5d and Sc, Ti, V-3d electrons. According to the results of the second-order elastic constants, these compounds met Born's criteria for mechanical stability. The elastic properties indicate that our compounds are ductile, anisotropic, and rigid. All the calculations and the data were compared with the results obtained with different methods in terms of its mechanical and electronic behavior, Os2VAl was found to have better physical properties than Os2ScAl, and Os2TiAl.


J. Duan, W. Yin-Wei, Z. A-Peng, S. Liu, and S. A. Dar, Electronic structure, elastic, mechanical, thermodynamic and thermoelectric investigations of Mn2PtX (X=Rh, Pd) Heusler alloys, Solid State Commun. 290 (2019) 12, https://doi.org/10.1016/j.ssc.2018.12.013

S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov, and C. Felser, Investigation of Co2FeSi: The Heusler compound with highest Curie temperature and magnetic moment, Appl. Phys. Lett. 88 (2006) 032503, https://doi.org/10.1063/1.2166205

Y, Miura, K. Nagao, and M. Shirai, Atomic disorder effects on half-metallicity of the full-Heusler alloys Co2(Cr1−xFex)Al: A first-principles study, Phys. Rev. B 69 (2004) 144413

H. Ohno, Properties of ferromagnetic III-V semiconductors, J. Magn. Magn. Mater. 200 (1999) 110, https://doi.org/10.1016/S0304-8853(99)00444-8

R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, New Class of Materials: Half-Metallic Ferromagnets, Phys. Rev. Lett. 50 (1983) 2024, https://doi.org/10.1103/PhysRevLett.50.2024

S. A. Wolf et al., Spintronics: A Spin-Based Electronics Vision for the Future, Science 294 (2001) 1488, https://doi.org/10.1126/science.1065389

S. J. Hashemifar, P. Kratzer, and M. Scheffler, Preserving the Half-Metallicity at the Heusler Alloy Co2MnSi(001) Surface: A Density Functional Theory Study, Phys. Rev. Lett. 94 (2005) 096402, https://doi.org/10.1103/PhysRevLett.94.096402

F. Aguilera-Granja, R. H. Aguilera-del-Toro and J. L. Morán-López, Mater. Res. Express 6 (2019) 106118.

F. Aguilera-Granja, R. H. Aguilera-del-Toro and J. L. Morán-López, A first principles systematic study of the structural, electronic, and magnetic properties of Heusler X2MnZ with X=Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Pt, Au and Z = Al, Si, Ga, Ge, In and Sn, Mater. Res. Express 6 (2019) 106118, https://doi.org/10.1088/2053-1591/ab243c

R. Kainuma et al., Magnetic-field-induced shape recovery by reverse phase transformation, Nature 439 (2006) 957, https://doi.org/10.1038/nature04493

J.-W. G. Bos and R. A. Downie, Half-Heusler thermoelectrics: a complex class of materials, J. Phys. Condens. Matter 26 (2014) 433201, https://doi.org/10.1088/0953-8984/26/43/433201

I. Galanakis, P. H. Dederichs, and N. Papanikolaou, SlaterPauling behavior and origin of the half-metallicity of the fullHeusler alloys, Phys. Rev. B 66 (2002) 174429, https://doi.org/10.1103/PhysRevB.66.174429

S. Amari, R. Mebsout, S. Mec¸abih, B. Abbar, and B. Bouhafs, First-principle study of magnetic, elastic and thermal properties of full Heusler Co2MnSi, Intermetallics 44 (2014) 26, https://doi.org/10.1016/j.intermet.2013.08.009

S. Maier et al., Order-disorder transitions in the Fe2Val Heusler alloy, Acta Mater. 121 (2016) 126, https://doi.org/10.1016/j.actamat.2016.08.080

A. Bentouaf and F. E. H. Hassan, Structural, electronic, magnetic and thermodynamic properties of full-Heusler compound Co2VSi: Ab initio study, J. Magn. Magn. Mater. 381 (2015) 65, https://doi.org/10.1016/j.jmmm.2014.12.065

M. Zemouli et al., First-Principles Investigation of Elastic, Electronic, and Half-Metallic Ferrimagnetic Properties in the Mn2RhSi Heusler Alloy, J. Supercond. Nov. Magn. 29 (2016) 3187, https://doi.org/10.1007/s10948-016-3719-4

S. Al, N. Arikan, S. Demir, and A. Iyigör, Lattice Dynamic properties of Rh2XAl (X=Fe and Y) alloys, Phys. B 531 (2018) 16, https://doi.org/10.1016/j.physb.2017.12.020

S. Berri et al., Study of structural, electronic and magnetic properties of Rh2MnX (X=Al, Ge and Sn) Heusler alloys using GGA-WC and GGA+U approaches, Phys. B 418 (2013) 58

F. Benzoudji, The Preference of the Ferromagnetic Ordering for the Novel Heusler Rh2MnTi Compound, J. Supercond. Nov. Magn. 32 (2019) 1415, https://doi.org/10.1007/s10948-018-4837-y

M. Mebrek et al., Theoretical Investigation of Electronic Structures, Elastic, and Magnetic Properties of Rh2CrGe FullHeusler Alloy, Acta Phys. Pol. A 136 (2019) 454, https://doi.org/10.12693/APhysPolA.136.454

V. Alijani, J. Winterlik, G. H. Fecher, and C. Felser, Tuning the magnetism of the Heusler alloys Mn3−xCoxGa from soft and half-metallic to hardmagnetic for spin-transfer torque applications, Appl. Phys. Lett. 99 (2011) 222510, https://doi.org/10.1063/1.3665260

A. Birsan and P. Palade, Band structure calculation of Ti2FeSn: A new half-metallic compound, Intermetallics 36 (2013) 86, https://doi.org/10.1016/j.intermet.2013.01.005

D. P. Rai, S. Sandeep, M. P. Ghimire, and R. K. Thapa, Study of energy bands and magnetic properties of Co2CrSi Heusler alloy, Bull. Mater. Sci. 34 (2011) 1219, https://doi.org/10.1007/s12034-011-0233-y

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864, https://doi.org/10.1103/PhysRev.136.B864

K. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133, https://doi.org/10.1103/PhysRev.140.A1133

P. Blaha et al., WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Vienna, Austria

P. Blaha et al., WIEN2k: An APW+lo program for calculating the properties of solids, J. Chem. Phys. 152 (2020) 074101, https://doi.org/10.1063/1.5143061

K. Schwarz, DFT calculations of solids with LAPW and WIEN2k, J. Solid State Chem. 176 (2003) 319, https://doi.org/10.1016/S0022-4596(03)00213-5

K. Schwarz, P. Blaha, and G. K. H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences, Comput. Phys. Commun. 147 (2002) 71, https://doi.org/10.1016/S0010-4655(02)00206-0

J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244, https://doi.org/10.1103/PhysRevB.45.13244

J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 7 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865

H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B 13 (1976) 5188, https://doi.org/10.1103/PhysRevB.13.5188

J. D. Pack and H. J. Monkhorst, Special points for Brillouinzone integrations-a reply, Phys. Rev. B 16 (1977) 1748, https://doi.org/10.1103/PhysRevB.16.1748

N. Arikan, H. Y. Ocak, G. D. Yıldız, Y. G. Yıldız, and R. Ünal, Investigation of the Mechanical, Electronic and Phonon Properties of X2ScAl (X=Ir, Os, and Pt) Heusler Compounds, J. Korean Phys. Soc. 76 (2020) 916, https://doi.org/10.3938/jkps.76.916

A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Comput. Mater. Sci. 28 (2003) 155, https://doi.org/10.1016/S0927-0256(03)00104-6

M. Gilleßen, Ph.D. thesis, RWTH Aachen University, 2009

J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD), JOM 65 (2013) 1501, https://doi.org/10.1007/s11837-013-0755-4

F. D. Murnaghan, The Compressibility of Media Under Extreme Pressures, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.244

M. Mebrek, A. Mokaddem, B. Doumi, A. Yakoubi, and A. Mir, A Novel Theoretical Study of Elastic and Electronic Properties of M2CdC (M=Zr, Hf, and Ta) MAX Phases, Acta Phys. Pol. A 133 (2017) 76, https://doi.org/10.12693/APhysPolA.133.76

Z. W. Huang, Y. H. Zhao, H. Hou, and P. D. Han, Electronic structural, elastic properties and thermodynamics of Mg17Al12, Mg2Si, and Al2Y phases from first-principles calculations, Phys. B 407 (2012) 1075, https://doi.org/10.1016/j.physb.2011.12.132

F. Tran, P. Blaha, and K. Schwarz, Band gap calculations with Becke- Johnson exchange potential, J. Phys. Condens. Matter 19 (2007) 196208, https://doi.org/10.1088/0953-8984/19/19/196208

D. Koller, F. Tran, and P. Blaha, Improving the modified Becke-Johnson exchange potential, Phys. Rev. B 85 (2012) 155109, https://doi.org/10.1103/PhysRevB.85.155109

D. Koller, F. Tran, and P. Blaha, Merits and limits of the modified Becke- Johnson exchange potential, Phys. Rev. B 83 (2011) 195134, https://doi.org/10.1103/PhysRevB.83.195134

F. Tran and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Phys. Rev. Lett. 102 (2009) 226401, https://doi.org/10.1103/PhysRevLett.102.226401

A. H. Reshak and M. Jamal, DFT Calculation for Elastic Constants of Tetragonal Structure of Crystalline Solids with WIEN2k Code: A New Package (Tetra-elastic), Int. J. Electrochem. Sci. 8 (2013) 12252

M. L. Ali and M. Z. Rahaman, Investigation of different physical aspects such as structural, mechanical, optical properties and Debye temperature of Fe2ScM (M=P and As) semiconductors: A DFT-based first principles study, Int. J. Mod. Phys. B 32 (2018) 1850121, https://doi.org/10.1142/S0217979218501217

F. Z. Benkhelifa, A. Lekhal, and S. Mec¸abih, GGA and GGA+U Description of Structural, Magnetic, and Elastic Properties of Rh2MnZ (Z=Ge, Sn, and Pb), J. Supercond. Nov. Magn. 26 (2013) 2573, https://doi.org/10.1007/s10948-012-1815-7

S. Qi, C.-H. Zhang, B. Chen, and J. Shen, First-principles study on the band structure, magnetic and elastic properties of halfmetallic Cr2MnAl, Mod. Phys. Lett. B 29 (2015) 1550139, https://doi.org/10.1142/S0217984915501390

J. Wang, S. Yip, S. R. Phillpot, and D. Wolf, Crystal instabilities at finite strain, Phys. Rev. Lett. 71 (1993) 4182, https://doi.org/10.1103/PhysRevLett.71.4182

D. G. Pettifor, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Technol. 8 (1992) 345, https://doi.org/10.1179/mst.1992.8.4.345

A. Abada, K. Amara, S. Hiadsi, and B. Amrani, First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe, J. Magn. Magn. Mater. 388 (2015) 59, https://doi.org/10.1016/j.jmmm.2015.04.023

F. Ahmadian and R. Alinajimi, First-principles study of half-metallic properties for the Heusler alloys Sc2CrZ (Z=C,Si,Ge,Sn), Comput. Mater. Sci. 79 (2013) 345, https://doi.org/10.1016/j.commatsci.2013.06.034

O. Cheref et al., First-principles study of half-metallic properties in X2VSi (X=Ti, Co) and their quaternaty TiCoVSi and CoTiVSi compounds, Comput. Condens. Matter 19 (2019) e00369, https://doi.org/10.1016/j.cocom.2019.e00369

O. Canko, F. Taskin, M. Atis, N. Kervan, and S. Kervan, Magnetism and Half-Metallicity in the Fe2ZrP Heusler Alloy, J. Supercond. Nov. Magn. 29 (2016) 2573, https://doi.org/10.1007/s10948-016-3576-1

A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech. 9 (1929) 49, https://doi.org/10.1002/zamm.19290090104

R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A 65 (1952) 349, https://doi.org/10.1088/0370-1298/65/5/307

S. Huang, R.-Z. Li, S.-T. Qi, B. Chen, and J. Shen, A theoretical study of the elastic and thermal properties of ScRu compound under pressure, Phys. Scr. 89 (2014) 065702, https://doi.org/10.1088/0031-8949/89/6/065702

V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3, Phys. Status Solidi Rapid Res. Lett. 1 (2007) 89, https://doi.org/10.1002/pssr.200600116

S. Boucetta, Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound, J. Magn. Alloys 2 (2014) 59, https://doi.org/10.1016/j.jma.2014.04.001

C. Zener, Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948).

S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London Edinburgh Dublin Philos. Mag. J. Sci. 45 (1954) 823, https://doi.org/10.1080/14786440808520496.




How to Cite

L. Taouaf, M. Mebrek, M. S. bendelhoum, and M. Berber, “A novel theoretical study of elastic and electronic properties of Os2YAl, (Y=Sc, Ti, V) Heusler Alloys”, Rev. Mex. Fís., vol. 68, no. 6 Nov-Dec, pp. 061001 1–, Nov. 2022.