Analysis of 4,6,8He+208Pb elastic scattering at E=22 MeV using various potentials

Authors

  • Awad Ibraheem Faculty of Science King Khalid University

DOI:

https://doi.org/10.31349/RevMexFis.68.051201

Keywords:

Density distributions, elastic scattering, optical potential, cluster folding, CDCC, Sao Paulo potential

Abstract

Using phenomenological and microscopic potentials, the experimental angular distributions for the 4,6,8He nuclei elastically scattered from a 208Pb target at  are investigated. Both the modified version of CDM3Y6 interaction based on the inclusion of the rearrangement term (RT) and those obtained from the Sao Paulo Potentials are used for the microscopic potentials. The cluster folding potential for 6He+208Pb is calculated using the triton + triton cluster structure for 6He. This analysis revealed that the real cluster folding potential strength must be reduced by about 90%. Using the extracted potentials, the total reaction cross sections were successfully reproduced.

References

I. Tanihata, H. Savajols and R. Kanungo, Recent experimental progress in nuclear halo structure studies, Progress in Particle and Nuclear Physics A68 (2013) 215, https://doi.org/10.1016/j.ppnp.2012.07.001.

G. D. Alkhazov et al., Nuclear matter distributions in the 6He and 8He nuclei from differential cross sections for smallangle proton elastic scattering at intermediate energy, Nuclear Physics A712 (2002) 269, https://doi.org/10.1016/S0375-9474(02)01273-3.

M. C. Parker, C. Jeynes and W. N. Catford, Halo Properties in Helium Nuclei from the Perspective of Geometrical Thermodynamics, Annalen der Physik 534 (2022) 2270003, https://doi.org/10.1002/andp.202270003.

M. Aygun, Y. Kucuk, I. Boztosun and A. Ibraheem, Microscopic few-body and Gaussian-shaped density distributions for the analysis of the 6He exotic nucleus with different target nuclei, Nuclear Physics A 848 (2010) 245, https://doi.org/10.1016/j.nuclphysa.2010.09.005.

A. M. Sanchez-Benitez et al., Study of the elastic scattering of 6He on 208Pb at energies around the Coulomb barrier, Nuclear Physics A803 (2008) 30, https://doi.org/10.1016/j.nuclphysa.2008.01.030.

G. Marquınez-Durn et al., ELASTIC SCATTERING OF 8He + 208Pb AT 22 MeV, ACTA PHYSICA POLONICA B 44 (2013) 467, https://doi.org/10.5506/APhysPolB.44.467.

L. Acosta et al., Elastic scattering and α-particle production in 6He + 208Pb collisions at 22 MeV, Phys. Rev. C 84 (2011) 044604. https://doi.org/10.1103/PhysRevC.84.044604.

D. Escrig et al., particle production in the scattering of 6He by 208Pb at energies around the Coulomb barrier, Nucl. Phys. A 792 (2007) 2, https://doi.org/10.1016/j.nuclphysa.2007.05.012.

Awad A. Ibraheem and M. Aygun, Optical model analysis of alpha particle scattering, Indian Journal of Physics 95 (2021) 2437, https://doi.org/10.1007/ s12648-020-01903-3. 10. A. M. Sanchez-Benitez et al., Scattering of 6He at energies around the Coulomb barrier, Journal of Physics G: Nuclear and Particle Physics 31 (2005) S1953, https://doi.org/10.1088/0954-3899/31/10/109.

G. Marquınez-Duran et al. Scatteing of 8He on 208Pb at energies round the Coulomb barrier, Acta Physica Polonica B 43 (2012) 239, https://doi.org/10.5506/APhysPolB.43.239.

G. Marquınez-Duran et al. Interaction of 8He with 208Pb at near-barrier energies: 4He and 6He production, Phys. Rev. C 98 (2018) 034615, https://doi.org/10.1103/PhysRevC.98.034615.

G. Marquınez-Duran et al. Precise measurement of nearbarrier 8He+208Pb elastic scattering: Comparison with 6He, Phys. Rev. C 94 (2016) 064618, https://doi.org/10.1103/PhysRevC.94.064618.

R. Barnett and J. S. Lilley, Interaction of alpha particles in the lead region near the Coulomb barrier, Phys. Rev. C9 (1974) 2010, https://doi.org/10.1103/PhysRevC.9.2010.

R. Barnett and J. S. Lilley, Interaction of alpha particles in the lead region near the Coulomb barrier, Phys. Rev. C 9 (1974) 2010, https://doi.org/10.1103/PhysRevC.9.2010.

G.Goldring ,B.A.Watson,M. C.Bertin and S.L.Tabor ,Alphaparticle scattering from 204,206,208Pb and 209Bi at incident energies near the coulomb barrier Phys. Lett. B 32 (1970) 465, https://doi.org/10.1016/0370-2693(70)90385-0.

L. C. Chamon et al., Nonlocal Description of the NucleusNucleus Interaction, Phys. Rev. LETT. 79 (1997) 5218, https://doi.org/10.1103/PhysRevLett.79.5218.

L. C. Chamon, D. Pereira and M. S. Hussein,Parameterfree account of quasielastic scattering of stable and radioactive nuclei, Phys. Rev. C 58 (1998) 576, https://doi.org/10.1103/PhysRevC.58.576.

L. C. Chamon,The S?o Paulo Potential, Nucl. Phys. A 787 (2007) 198c. https://doi.org/10.1016/j.nuclphysa.2006.12.032.

L. C. Chamon, B. V. Carlson and L. R. Gasques,Sao Paulo potential version 2 (SPP2) and Brazilian nuclear potential (BNP), Comp. Phys. Comm.267 (2021) 108061. https://doi.org/10.1016/j.cpc.2021.108061.

D. T. Khoa, G. R. Satchler and W. von Oertzen, Nuclear incompressibility and density dependent NN interactions in the folding model for nucleus-nucleus potentials, Phys. Rev. C 56 (1997) 954. https://doi.org/10.1103/PhysRevC.56.954.

D. T. Khoa, α-nucleus optical potential in the double-folding model Phys. Rev. C 63 (2001) 034007, https://doi.org/10.1103/PhysRevC.63.034007.

Bertsch G F, Borysowicz J, Mcmanus H and Ae W G,Interactions for inelastic scattering derived from realistic potentials, Nucl. Phys. A 284 (1977) 399, https://dx.doi.org/10.1016/0375-9474(77)90392-X.

Anantaraman N, Toki H and Bertsch G F,An effective interaction for inelastic scattering derived from the Paris potential, Nucl. Phys. A 398 (1983) 269. https://doi.org/10.1016/0375-9474(83)90487-6.

M. El-Azab Farid and G. R. Satchler, A density-dependent interaction in the folding model for heavy-ion potentials, Nucl. Phys. A 438 (1985) 525, https://doi.org/10.1016/0375-9474(85)90391-4.

https://www.phy.anl.gov/theory/research/density/.

R.E. Warner et al.,Total reaction and 2n-removal cross sections of 20–80A MeV 4,6,8He , 6−9,11Li, and 10 Be on Si, Phys. Rev. C54 (1996) 1700. https://link.aps.org/doi/10.1103/PhysRevC.54.1700.

M. El-Azab Farid and M. A. Hassanain,Density-independent folding analysis of the 6,7Li elastic scattering at intermediate energies, Nucl. Phys. A 678 (2000) 39, https://doi.org/10.1016/S0375-9474(00)00313-4.

D. T. Khoa, N. Hoang Phuc, D. Thi Loan and B. Minh Loc, Nuclear mean field and double-folding model of the nucleus-nucleus optical potential, Phys. Rev. C 94 (2016) 034612, https://link.aps.org/doi/10.1103/PhysRevC.94.034612.

B. V. Carlson and D. Hirata,Dirac-Hartree-Bogoliubov approximation for finite nuclei, Phys. Rev. C 62 (2000) 054310, https://doi.org/10.1103/PhysRevC.62.054310.

I. J. Thompson, Coupled reaction channels calculations in nuclear physics,Comput. Phys. Rep. 7 (1988) 167, https://doi.org/10.1016/0167-7977(88)90005-6.

G. R. Satchler and W. G. Love,Folding model potentials from realistic interactions for heavy-ion scattering, phys. Rep. 55 (1979) 183, https://doi.org/10.1016/0370-1573(79)90081-4.

R. A. Hardekopf, L. R. Veeser and P. W. Keaton Jr.,Polarization Measurements and Optical-Model Potential for Tritons, Phys. Rev. Lett. 35 (1975) 1623, https://doi.org/10.1103/PhysRevLett.35.1623.

Sh. Hamada and Awad A. Ibraheem,Peculiarities of 6 Li+12C elastic scattering, Int. J. Mod. Phys. E 28 (2019) 1950108. https://doi.org/10.1142/S0218301319501088.

Sh. Hamada et al., Analysis of 6 Li+16O elastic scattering using different potentials, Rev. Mex. Fis. 66 (2020) 322. https://doi.org/10.31349/RevMexFis.66.322.

Sh. Hamada and Awad A. Ibraheem,Cluster folding optical potential analysis for 6 Li+28Si elastic scattering, Revista Mexicana de Fisica 67 (2021) 276. https://doi.org/10.31349/RevMexFis.67.276.

Sh. Hamada, Norah A. M. Alsaif and Awad A. Ibraheem,Detailed analysis for 6 Li+40Ca elastic scattering using different potentials, Phys. Scr. 96 (2021) 055306, https://doi.org/10.1088/1402-4896/abeba6.

Awad A. Ibraheem et al.,Elastic and Inelastic Scattering of 9,10,11Be by 64Zn and 120Sn Nuclei at Different Energies, Braz. J. Phys. 753 (2021) 51. https://doi.org/10.1007/s13538-020-00839-7.

Awad A. Ibraheem, N. A. M. Alsaif, M. Al-Ahmari and Sh. Hamada,Further investigation of 10,11B + 58Ni elastic scattering , Phys. Scr. 96 (2021) 115307, https://doi.org/10.1088/1402-4896/ac183f.

A. M. Moro Muñoz, K. M. Rusek, J. M. Arias Carrasco, J. J. Gomez Camacho, M. Rodrıguez Gallardo, Improved di-neutron cluster model for 6He scattering, Phys. Rev. C 75 (2007) 064607. https://doi.org/10.1103/PhysRevC.75.064607.

N. Keeley,et al., Effect of E1 excitations to the continuum: 6He and 6Li+209Bi compared Phys. Rev.C 68 (2003) 054601. https://doi.org/10.1103/PhysRevC.68.054601.

E.F. Aguilera et al., Transfer and/or Breakup Modes in the 6He+209Bi Reaction near the Coulomb Barrier, Phys. Rev. Lett. 84 (2000) 5058. https://doi.org/10.1103/PhysRevLett.84.5058.

Downloads

Published

2022-08-18

How to Cite

[1]
A. . Ibraheem, “Analysis of 4,6,8He+208Pb elastic scattering at E=22 MeV using various potentials”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 051201 1–, Aug. 2022.