Standard enthalpies of formation of 3-hydroxyphthalic anhydride

Authors

  • M. López-Ortega Benemérita Universidad Autónoma de Puebla
  • Miguel Angel García-Castro Benemérita Universidad Autónoma de Puebla https://orcid.org/0000-0003-4459-873X
  • J. A. Galicia Aguilar Benemérita Universidad Autónoma de Puebla
  • R.J. Aranda-García Benemérita Universidad Autónoma de Puebla
  • H.S. Ramos-Hernández Benemérita Universidad Autónoma de Puebla
  • F. Díaz-Sánchez Benemérita Universidad Autónoma de Puebla

DOI:

https://doi.org/10.31349/RevMexFis.68.061701

Keywords:

3-hydroxyphthalic anhydride; thermogravimetry; Knudsen effusion; calorimetry combustion; enthalpy of formation

Abstract

In this investigation thermochemical properties of 3-hydroxyphthalic anhydride were determined. Fusion enthalpy, fusion temperature and molar heat capacity in solid phase were obtained by differential scanning calorimetry. By the Knudsen effusion method, the molar enthalpy of sublimation at 298.15 K was obtained. By thermogravimetric data, it was possible to determine the molar enthalpy of sublimation and the molar enthalpy of vaporization. On the other hand, the molar enthalpy of formation in solid phase at 298.15 K was determined by combustion calorimetry. The molar enthalpy of formation in gas phase at 298.15 K was calculated from molar enthalpy of sublimation at 298.15 K and molar enthalpy of formation in solid phase at 298.15 K. This experimental value was compared both theoretical enthalpy of formation in gas phase by using Gaussian methods at the G3 and G4 levels and with an estimated value in relation to phthalic anhydride.

Author Biographies

M. López-Ortega, Benemérita Universidad Autónoma de Puebla

Facultad de Ingeniería Química de la Benemérita Universidad Autónoma de Puebla, 18 Sur y Av. San Claudio Ciudad Universitaria, Puebla, Pue, C.P. 72570, México

J. A. Galicia Aguilar, Benemérita Universidad Autónoma de Puebla

Facultad de Ingeniería Química de la Benemérita Universidad Autónoma de Puebla, 18 Sur y Av. San Claudio Ciudad Universitaria, Puebla, Pue, C.P. 72570, México

R.J. Aranda-García, Benemérita Universidad Autónoma de Puebla

Facultad de Ingeniería Química de la Benemérita Universidad Autónoma de Puebla, 18 Sur y Av. San Claudio Ciudad Universitaria, Puebla, Pue, C.P. 72570, México

H.S. Ramos-Hernández, Benemérita Universidad Autónoma de Puebla

Facultad de Ingeniería Química de la Benemérita Universidad Autónoma de Puebla, 18 Sur y Av. San Claudio Ciudad Universitaria, Puebla, Pue, C.P. 72570, México

F. Díaz-Sánchez, Benemérita Universidad Autónoma de Puebla

Facultad de Ingeniería Química de la Benemérita Universidad Autónoma de Puebla, 18 Sur y Av. San Claudio Ciudad Universitaria, Puebla, Pue, C.P. 72570, México

References

U. Edlund and A. C. Albertsson, Polyesters based on diacid monomers, Adv. Drug Delivery Rev. 55 (2003) 585, https://doi.org/10.1016/S0169-409X(03)00036-X

B. Jiang, E. S. Wang, K. A. Donovan, Y. Liang, E. S. Fischer, T. Zhang, and N. S. Gray, Development of dual and selective degraders of cyclin-dependent kinases 4 and 6, Angew. Chem. Int. Ed. 58 (2019) 6321, https://doi.org/10.1002/anie.201901336

C. Steinebach, S. Lindner, N. D. Udeshi, D. C. Mani, H. Kehm, S. Koepff, S. A. Carr, M. Guetschow, and J. Kroenke, Homo-PROTACs for the chemical knockdown of cereblon, ACS Chem. Biol. 13 (2018) 2771. https://doi.org/10.1021/acschembio.8b00693

N. S. Gray, S. J. Haggarty, Q. Cai, B. L. S. Telo, C. Maria, F. Zhang, and F. M. Ferguson, Compounds for tau protein degradation, WO Pat. 2019014429; PCT Int. Appl. (2019).

E. Hyeon, L. Sen, S. Mingzhi, H. N. Tae, H. Jongki, D. K. Nam, Y. C. Hae, H. Y. Min, and H. J. Jee, Synthesis of Phthalimide Derivatives as Potential PPAR-γ Ligands, Mar. Drugs. 14 (2016) 112. doi:10.3390/md14060112

S. Jiang, Li Y, Lin K, N. Strick, A. R. Neurath, K. S. George KS, S. Choudhury, B. Esmaeli-Azad, Virucidal and antibacterial activities of 3-HP-β-LG. Molecular Approaches to the Control of Infectious Diseases, Int. Congr. Ser. 97 (1997) 327.

A. R. Neurath, N. Strick, and Li YY, 3-Hydroxyphthaloyl β-lactoglobulin. III. Antiviral activity against herpesviruses, Antivir. Chem. Chemoth. 9 (1998) 177, https://doi.org/10.1177/095632029800900209

A. Oevermann, M. Engels, U. Thomas, and A. Pellegrini, The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification, Antivir. Res. 59 (2003) 23, https://doi.org/10.1016/S0166-3542(03)00010-X

Li M, J. Duan, Qiu J, Yu F, Che X, S. Jiang, and Li L, 3-Hydroxyphthalic anhydride-modified human serum albumin as a microbicide candidate against HIV type 1 entry by targeting both viral envelope glycoprotein gp120 and cellular receptor CD4, AIDS. Res. Hum. Retrov. 29 (2013) 1455. https://doi.org/10.1089/aid.2013.0043

Li L, Qiu J, Lu L, An S, P. Qiao, S. Jiang, and Liu S, 3-Hydroxyphthalic anhydride-modified human serum albumin as a microbicide candidate inhibits HIV infection by blocking viral entry, J. Antimicrob. Chemoth. 68 (2013) 573. https://doi.org/10.1093/jac/dks458

M. A. García-Castro, P. Amador, J. M. Hernández-Pérez, A. E. Medina-Favela, and H. Flores, Experimental and computational thermochemistry of 3- and 4-nitrophthalic anhydride, J. Phys. Chem. A 118 (2014) 3820. https://doi.org/10.1021/jp5003929.

M. A. García-Castro MA, P. Amador, A. Rojas, J. M. Hernández-Pérez, J. M. Solano-Altamirano, H. Flores, and K. Salas-López, J. Chem. Thermodyn. 127 (2018) 117. https://doi.org/10.1016/j.jct.2018.07.026

K. Salas-López, P. Amador, A. Rojas, F. J. Melendez, and H. Flores, Experimental and theoretical thermochemistry of the isomers 3- and 4‑nitrophthalimide, J. Phys. Chem. A 121 (2017) 5509. https://doi.org/10.1021/acs.jpca.7b02508

R. Sabbah, Xu-wu, J. S. Chickos, M. L. Planas Leitão, M. V. Roux, and L. A. Torres, Reference materials for calorimetry and differential thermal analysis, Thermochim. Acta. 331 (1999) 93. https://doi.org/10.1016/S0040-6031(99)00009-X

C. Plato, and A. R. Glasgow, Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity organic chemicals. Application to 95 compounds, J. Anal. Chem. 41 (1969) 330. https://doi.org/10.1021/ac60271a041

M. E. Brown, Determination of purity by differential scanning calorimetry (DSC), J. Chem. Educ. 56 (1979) 310. https://doi.org/10.1021/ed056p310

P. Góralski, M. Tkaczyk, and M. Chorazewski, Heat capacities of α, ω-dichloroalkanes at temperatures from 284.15 K to 353.15 K and a group additivity analysis, J. Chem. Eng. Data. 48 (2003) 492. https://doi.org/10.1021/je020042y

E. A. Camarillo, and H. Flores, Construction, calibration and testing of a micro-combustion calorimeter, J. Chem. Thermodyn. 38 (2006) 1269. https://doi.org/10.1016/j.jct.2006.03.001

J. Coops, R. S. Jessup, K. G. van Nes, F. D. Rossini, Experimental Thermochemistry, N. Y.: Interscience, (1956).

K. Salas-López, M. A. García-Castro, P. Amador, A. M. Herrera-González, A. Galicia-Aguilar, F. A. Amador, F. Hernández-Pascasio, and H. Flores, Thermochim. Acta. 697 (2021) 178861. https://doi.org/10.1016/j.tca.2021.178861

S. P. Verevkin, Thermochemistry of amines: strain in six-membered rings from experimental standard molar enthalpies of formation of morpholines and piperazines, J. Chem. Thermodyn. 30 (1998) 1069. https://doi.org/10.1006/jcht.1998.0371

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, Atomic weights of the elements 2013 (IUPAC Technical Report), Pure Appl. Chem. 88 (2016) 265. https://doi.org/10.1515/pac-2015-0305

W. D. Good, and N. K. Smith, Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane, J. Chem. Eng. Data 14 (1969) 102. https://doi.org/10.1021/je60040a036

D. M. Price, Vapor pressure determination by thermogravimetry, Thermochim. Acta 367 (2001) 253 https://doi.org/10.1016/S0040-6031(00)00676-6

M.T. Vieyra-Eusebio, and A. Rojas, Vapor Pressures and Sublimation Enthalpies of Nickelocene and Cobaltocene Measured by Thermogravimetry, J. Chem. Eng. Data 56 (2011) 5008 https://doi.org/10.1021/je200815v

F. Ramos, J. M. Ledo, H. Flores, E. A. Camarillo, J. Carvente, and M. P. Amador, Evaluation of sublimation enthalpy by thermogravimetry: Analysis of the diffusion effects in the case of methyl and phenyl substituted hydrantoins, Thermochim. Acta 655 (2017) 181 https://doi.org/10.1016/j.tca.2017.06.024

J. J. H. Haftka, J. R. Parsons, and H. A. J Govers, Supercooled liquid vapor pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography, J. Chromatrogr. A 1135 (2006) 91 https://doi.org/10.1016/j.chroma.2006.09.050

K. Nass, D. Lenoir, and A. Kettrup, Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure, Angew. Chem. Int. Ed. Engl. 34 (1995) 1735 https://doi.org/10.1002/anie.199517351

F. S. Mortimer, and R. V. Murphy, The Vapor Pressures of Some Substances Found in Coal Tar., Ind. Eng. Chem. 15 (1923) 1140 https://doi.org/10.1021/ie50167a012

J. S. Chickos, and W. Hanshaw, Vapor Pressures and Vaporization Enthalpies of the n-Alkanes from C21 to C30 at T = 298.15 K by Correlation Gas Chromatography, J. Chem. Eng. Data 49 (2004) 77 https://doi.org/10.1021/je0301747

J. S. Chickos, and W. Hanshaw, Vapor Pressures and Vaporization Enthalpies of the n-Alkanes from C31 to C38 at T = 298.15 K by Correlation Gas Chromatography, J. Chem. Eng. Data 49 (2004) 620 https://doi.org/10.1021/je030236t

J. S. Chickos, D. Hesse, S. Hosseini, G. Nichols, and P. Webb, Sublimation enthalpies at 298.15 K using correlation gas chromatography and differential scanning calorimetry measurements, Thermochim. Acta 313 (1998) 101 https://doi.org/10.1016/S0040-6031(97)00432-2

K. Ruzicka, and V. Majer, Simultaneous Treatment of Vapor Pressures and Related Thermal Data Between the Triple and Normal Boiling Temperatures for n-Alkanes C31 to C38, J. Phys. Chem. Ref. Data 23 (1994) 1 https://doi.org/10.1063/1.555942

J. S. Chickos, S. Hosseini, and D. G. Hesse, Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochim. Acta 249 (1995) 41 https://doi.org/10.1016/0040-6031(95)90670-3

W. Acree, and J. S. Chickos, Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2010, J. Phys. Chem. Ref. Data 45 (2016) 033101 https://doi.org/10.1063/1.4948363

A. Rojas, and E. Orozco, Measurement of the enthalpies of vaporization and sublimation of solids aromatic hydrocarbons by differential scanning calorimetry, Thermochim. Acta 405 (2003) 93 https://doi.org/10.1016/S0040-6031(03)00139-4

R. Sabbah, A. Xu-wu, J. S. Chickos, M. L. Planas Leitão, M. V. Roux, and L. A. Torres, Reference materials for calorimetry and differential thermal analysis. Thermochim. Acta 331 (1999) 93 https://doi.org/10.1016/S0040-6031(99)00009-X

A. Rojas, and M. T. Vieyra-Eusebio, Enthalpies of sublimation of ferrocene and nickelocene measured by calorimetry and the method of Langmuir, J. Chem. Thermodyn. 43 (2011) 1738 https://doi.org/10.1016/j.jct.2011.06.001

R. S. Bradley, and T. G. Cleasby, The vapour pressure and lattice energy of some aromatic ring compounds, J. Chem. Soc. 169 (1953) 1690 https://doi.org/10.1039/JR9530001690

C. G. De Kruif, Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons, J. Chem. Thermodyn. 12 (1980) 243 https://doi.org/10.1016/0021-9614(80)90042-7

L. Malaspina, R. Gigli, and G. Bardi, Microcalorimetric determination of the enthalpy of sublimation of benzoic acid and anthracene, J. Chem. Phys. 59 (1973) 387 https://doi.org/10.1063/1.1679817

P. C. Hansen, and C. A. Eckert, An improved transpiration method for the measurement of very low vapor pressures, J. Chem. Eng. Data 31 (1986) 1 https://doi.org/10.1021/je00043a001

V. P. Klochkov, The vapor pressure of some aromatic compounds, Zh. Fiz. Khim 32 (1985) 1177

K. V. Zherikova, and S. P. Verevkin, Ferrocene: Temperatura adjustments of sublimation and vaporization enthalpies, Fluid Phase Equilibr. 472 (2018) 196 https://doi.org/10.1016/j.fluid.2018.05.004

L.A. Curtiss, K. Raghavachari, P.C. Redfern, V. Rassolov, and J.A. Pople, Gaussian-3 (G3) theory for molecules containing first and second-row atoms, J. Chem. Phys. 109 (1998) 7764. https://doi.org/10.1063/1.477422

L.A. Curtiss, P.C. Redfern, and K. Raghavachari, Gaussian-4 theory, J. Chem. Phys. 126 (2007) 084108. https://doi.org/10.1063/1.2436888

W.J. Hehre, L. Radom, P.V.R. Schleyer, and J.A. Pople, Ab Initio, Molecular Orbital Theory, (Wiley, New York, 1986).

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.

A. Nicolaides, A. Rauk, M.N. Glukhovtsev, and L. Radom, Heats of Formation from G2, G2(MP2), and G2(MP2,SVP) Total Energies, J. Phys. Chem. 100 (1996) 17460. https://doi.org/10.1021/jp9613753

D. S. Pratt, and G. A. Perkins, Phthalic acid derivatives; constitution and color, v.1 some derivatives of tetrachloro- and tetraiodo phthalimides, J. Am. Chem. Soc. 40 (1918) 198 https://doi.org/10.1021/ja02234a023

E. L. Eliel, A. W. Burgstahler, D. E. Rivard, and L. Haefele, The Methyl Esters of 3-Hydroxyphthalic Acid. Selective Reduction of Monomethyl Phthalates with Lithium Aluminum Hydride, J. Am. Chem. Soc. 77 (1955) 5092 https://doi.org/10.1021/ja01624a042

J. A. H. Näsman, A Versatile Synthetic Route to 3-Hydroxyphtalic Anhydride, Syntesis 8 (1985) 788 10.1055/s-1985-31350

R. J. Petfield, and E. D. Amstutz, HALOGEN REACTIVITIES. VI. THE REACTIVITIES OF SEVERAL α-BROMOFURANS. THE ISOLATION OF 2-METHOXYFURAN, J. Org. Chem. 19 (1954) 1944 https://doi.org/10.1021/jo01377a011

J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA key values for thermodynamics (Hemisphere Pub. Corp. 1989)

R. Notario, O. Castano, J. Abboud, R. Gomperts, L.M. Frutos, and R. Palmeiro, Organic thermochemistry at high Ab initio levels. 1. A G2(MP2) and G2 study of cyclic saturated and unsaturated hydrocarbons (including aromatics). J. Org. Chem. 64 (1999), 9011. https://doi.org/10.1021/jo990898e

R. Notario, O. Castano, R. Gomperts, L.M. Frutos, and R. Palmeiro, Organic thermochemistry at high AB initio levels. 3. A G3 study of cyclic saturated and unsaturated hydrocarbons (including aromatics). J. Org. Chem. 65 (2000), 4298. https://doi.org/10.1021/jo000089r

K. Raghavachari, and B.B. Stefanov, L.A. Curtiss, Accurate thermochemistry for larger molecules: Gaussian-2 theory with bond separation energies. J. Chem. Phys. 106 (1997), 6764. https://doi.org/10.1063/1.473659

J. B. Pedley, Thermochemical data and structures of organic compounds, (Thermodynamics Research Center, 1994).

R. Sabbah, and T. H. D. Le, Étude thermodynamique des trois isomères de l’acide hydroxybenzoïque, Can. J. Chem. 71 (1993) 1378 https://doi.org/10.1139/v93-178

W. V. Steele, R. D. Chirico, A. B. Cowell, S. E. Knipmeyer, and A. Nguyen, Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Methyl Benzoate, Ethyl Benzoate, (R)-(+)-Limonene, tert-Amyl Methyl Ether, trans-Crotonaldehyde, and Diethylene Glycol, J. Chem. Eng. Data 47 (2002) 667 https://doi.org/10.1021/je0100847

J. M. Ledo et al., Experimental and theoretical study of methyl n-hydroxybenzoates, J. Chem. Thermodyn. 124 (2018) 1 https://doi.org/10.1016/j.jct.2018.04.011

V. L. S. Freitas, C. P. F. Santos, M. D. M. C. Ribeiro da Silva, and M. A. V. Ribeiro da Silva, The effect of ketone groups on the energetic properties of phthalan derivatives, J. Chem. Thermodyn. 96 (2016) 74 https://doi.org/10.1016/j.jct.2015.12.018

Downloads

Published

2022-11-01

How to Cite

[1]
M. López-Ortega, M. A. García-Castro, J. A. Galicia-Aguilar, R. Aranda-García, H. Ramos-Hernández, and F. Díaz-Sánchez, “Standard enthalpies of formation of 3-hydroxyphthalic anhydride”, Rev. Mex. Fís., vol. 68, no. 6 Nov-Dec, pp. 061701 1–, Nov. 2022.

Issue

Section

17 Thermodynamics and Statistical Physics