First principle investigation of physical properties of MNiBi: (M = Sc, Y) half-Heusler compounds

Authors

  • MISSOUM Djamel-Eddine Faculty of Sciences and Technology, University of Ain Temouchent, Belhadj Bouchaib, Algeria.
  • Kaddour BENCHERIF
  • Djilali BENSAID

DOI:

https://doi.org/10.31349/RevMexFis.68.061601

Keywords:

half heusler, structural properties, electronic properties, elastic properties, optical properties

Abstract

We have investigated the half Heusler compounds MNiBi (M=Sc, Y), using the framework of density functional theory DFT within the full potential linearized augmented plane wave (FP-LAPW) method and studied the structural, electronic, optical and elastic properties. The structural properties are predicted using the Generalized Gradient Approximation GGA and Local Density Approximation LDA, the calculations reveal that Lattice constants and other structural parameter are better matched in GGA approximation with experimental and theoretical result than LDA approximation. The calculated band structure and the density of states (DOS) with GGA, LDA and Tran and Blaha modified Becke-Johnson (TB-mBJ) exchange-correlation potentials, indicates a semiconducting nature with indirect narrow band gaps for both compounds ScNiBi and YNiBi, it shown from result that using (TB-mBJ) functionals is much more successful than the LDA and GGA approach in estimating bandgaps for our half Heusler ScNiBi and YNiBi. Optical properties of the compounds under investigation are also reported in this paper, high absorptivity are observed in the visible and ultraviolet region. The bulk modulus, shear modulus, young’s modulus, and other elastic constants are computed to discuss their elastic properties.

References

K. Bencherif, A. Yakoubi, N. Della, O. Miloud abid, H. Khachai, R. Ahmed et al, First principles investigation of the elastic, optoelectronic

and thermal properties of XRuSb:(X= V, Nb,Ta) semi-Heusler compounds using the mBJ exchange potential, Journal of Electronic Ma-

terials, Vol. 45, No. 7, 2016. https://doi:10.1007/s11664-016-4488-3

D. Shrivastava and S. P. Sanyal, Theoretical study of structural, electronic, phonon and thermoelectric properties of KScX (X=Sn and

Pb) and KYX (X=Si and Ge) half-Heusler compounds with 8 valence electrons count, J. Alloys and Compounds 784 (2019) 319–329. https:

//doi:org/10.1016/j.jallcom.2019.01.050

J. K. Satyam, S. M. Saini, Electronic structure and optical properties of Rare-Earth based ErPdSb half Heusler Compound: A GGA+U study, Materials Today: Proceedings 44 (2021) 3040–3044. https://doi:org/10.1016/j.matpr.2021.02.440

B. I. Adetunji, P. O. Adebambo, M. K. Bamgbose, A. A. Musari, and G. A. Adebayo, Predicting the elastic, phonon and thermodynamic

properties of cubic HfNiX (X= Ge and Sn) Half Heulser alloys: a DFT study, Eur. Phys.J. B (2019) 92: 231. https://doi:org/10.1140/ epjb/e2019-100305-3

S. Ahmed, M. Zafar, M. Rizwan, M. I. Khan, H. Arshad, J. Hai-Bo et al, Theoretical investigation of structural and magnetic properties of MnTiX (X= Si, Ge, Se, Te) half-Heusler alloys, Indian J Phys IACS (2020). https://doi:org/10.1007/s12648-020-01739-x

M.K. Bamgbose, Electronic structure and thermoelectric properties of HfRhZ (Z= As, Sb and Bi) half-Heusler compounds, Applied Physics A (2020) 126:564. https://doi:10.1007/s00339-020-03691-3

N. Rahman, M. Husain, J. Yang, G. Murtaza, M. Sajjad, A. Habib et al, First Principle Study of Structural, Electronic, Elastic, and Magnetic Properties of Half-Heusler Compounds ScTiX (X= Si, Ge, Pb, In, Sb, and Tl), Journal of Superconductivity and Novel Magnetism (2020) 33:3915–3922. https://doi:10.1007/s10948-020-05652-6

A. Erkisi, G. Surucu, R. Ellialtioglu, The investigation of electronic, mechanical and lattice dynamical properties of PdCoX (X=Si and

Ge) half-Heusler metallics in α, β and γ structural phases: an ab initio study, Phil. Mag.97 (2017) 2237–2254. https://doi:10.1080/

2017.1329595

T. Graf, C. Felser and S. S. P. Parkin, Simple rules for the understanding of Heusler compounds, Progress in Solid State Chemistry 39 (2011) 1–50. https://doi:10.1016/j.progsolidstchem.2011.02.001

V.V. Romaka, L. Romaka, A. Horyn, Y Stadnyk, Experimental and theoretical investigation of the Y–Ni–Sb and Tm–Ni–Sb systems, Journal of Alloys and Compounds 855 (2021) 157334. https://doi: org/10.1016/j.jallcom.2020.157334

M. Sarwan, V. Abdul Shukoor, M. Faisal Shareef, S. Sadhna, A first principle study of structural, elastic, electronic and thermodynamic properties of Half-Heusler compounds; YNiPn (Pn= As, sb, and bi), Solid State Sciences 112 (2021) 106507. APhysPolA.138.533. https://doi: org/10.1016/j.solidstatesciences.2020.106507

S D. Guo, Importance of spin–orbit coupling in power factor calculations for half-Heusler ANiB (A= Ti, Hf, Sc, Y; BSn, Sb, Bi), Journal of Alloys and Compounds 663 (2016) 128e133. https://doi: org/10.1016/j.jallcom.2015.12.139

R. Majumder, S. K. Mitro, Justification of crystal stability and origin of transport properties in ternary half-Heusler ScPtBi, RSC Adv., 2020, 10, 37482. https://doi: 10.1039/D0RA06826H

M.J. Winiarskia and K. Bilinska, Power Factors of p-type Half-Heusler Alloys ScNiBi, YNiBi, and LuNiBi by ab initio Calculations, ACTA PHYSICA POLONICA A No.3 Vol.138 (2020). https://doi:10.12693/APhysPolA.138.533

A. Bano and N K Gaur, Investigation of strain effect on electronic, chemical bonding, magnetic and phonon properties of ScNiBi: a DFT study, Mater. Res. Express 5 046502, 2018. https://doi: 10.1088/2053-1591/aab7ca

B. Ul Haq, R. Ahmed, and S. Goumri-Said, DFT characterization of cadmium doped zinc oxide for photovoltaic and solar cell applications, J. Sol. Energy Mater. Solids 130, 6 (2014). https://doi: org/10.1016/j.solmat.2014.06.014

A. Djied, T. Seddik, O. Merabiha, G. Murtaza, R. Khenata, R. Ahmed et al, Structural phase transition and opto-electronic properties of NaZnAs, J. Alloy Compd. 622, 812 (2015). https://doi: org/10.1016/j.jallcom.2014.10.173

J.D. Singh, N. Lars, Planewaves pseudopotentials, and the LAPW method. Springer, New York, NY (2006). https://www.springer.com/gp/book/9780387287805

P. Blaha, K.Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen and L.D. Marks, WIEN2k: An APW+lo program for calculating the properties of solids, J. Chem. Phys. 152,074101(2020). https://doi.org/10.1063/1.5143061

J.P. Perdew, Y. Wang, Pair-distribution function and its coupling-constant average for the spin-polarized electron gas, Phys. Rev. B 45, 13244 (1992). https://doi: org/10.1103/PhysRevB.46.12947

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996). https://doi: org/10.1103/PhysRevLett.77.3865

F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

M. Jamal, M. Bilal, I. Ahmad, S. Jalali-Asadabadi, IRelast package, J. Alloy. Compd. 735, 569–579 (2018). https://doi: org/10.1016/j.jallcom.2017.10.139

F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30, 244 (1944). https://doi: org/10.1073/pnas.30.9.244

L. Shanming, Z. Huaizhou, L. Dandan, J. Shifeng, and G. Lin, Synthesis and thermoelectric properties of half-Heusler alloy YNiBi, Journal of Applied Physics 117, 205101 (2015). https://doi: org/10.1063/1.4921811

P. Villars, L. D. Calvert. Pearson's handbook of crystallographic data for intermediate phases, American Society for Metals. Metals Park. Ohio. 1986. Vols. 1–3. 3258 pp. https://doi: org/10.1002/crat.2170221117

L. Deng, Z. H. Liu, X. Q. Ma, Z. P. Hou, E. K. Liu, X. K. Xi et al, Observation of weak antilocalization effect in high-quality ScNiBi single crystal, Journal of Applied Physics 121, 105106 (2017). https://doi: org/10.1063/1.4978015

J Yang, H Li, T Wu, W Zhang, L Chen, and J Yang, Evaluation of half‐Heusler compounds as thermoelectric materials based on the calculated electrical transport properties, Adv. Funct. Mater. 2008, 18, 2880–2888. https://doi: org/10.1002/adfm.200701369

H.C. Kandpal, C. Felser, R. Seshadri, Covalent bonding and the nature of band gaps in some half-Heusler compounds, J. Phys. D 39 (2006) 776–785. https://doi: 10.1088/0022-3727/39/5/S02

H. Ehrenreich, M.H. Cohen, Self-consistent field approach to the many-electron problem. Phys. Rev. 115, 786 (1959). https://doi.org/10.1103/PhysRev.115.786

A. Dey, A first-principles study of TiX2 (X = S, Se, and Te) compounds optical properties under the effect of externally applied electric field and strain. Phys. Solid State. 62, 1905–1915 (2020). https://doi.org/10.1134/S1063783420100042

B. Amin, I. Ahmad, M. Maqbool, S. Goumri-Said and R. Ahmad, Ab initio study of the bandgap engineering of $Al_{1-x} Ga_{x} N$ for optoelectronic applications, J. Appl. Phys. 109, 023109, (2011). https://doi.org/10.1063/1.3531996

G. Marius, The Physics of Semiconductors: Kramers-Kronig Relations (Springer, Berlin Heidelberg, 2010), pp. 775–776. https://doi 10.1007/978-3-319-23880-7

M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B. 73, 045112 (2006). https://doi.org/10.1103/PhysRevB.73.045112

M. Irfan, M.A. Kamran, S. Azam, M.W. Iqbal, T. Alharbi, A. Majid, S.B. Omran, R. Khenata, A. Bouhemadou, X. Wang, Electronic structure and optical properties of TaNO: an ab initio study. J. Mol. Graph. Model. 92, 296–302 (2019). https://doi.org/10.1016/j.jmgm.2019.08.006

J. Sun, H.-T. Wang, J. He, Y. Tian, Ab initio investigations of optical properties of the high pressure phases of ZnO. Phys. Rev. B 71, 125132–125142 (2005). https://doi.org/10.1103/PhysRevB.71.125132

D.R. Penn, Phys. Rev. 128 (1962) 2093. https://doi.org/10.1103/PhysRev.128.2093

R.Majumder ;MdM.Hossain , First-principles study of structural, electronic, elastic, thermodynamic and optical properties of topological superconductor LuPtBi, Computational Condensed Matter ,V 21, December 2019, e00402. https://doi: org/10.1016/j.cocom.2019.e00402

M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford, Acta Cryst. (1956). 9, 837-838. https://doi: org/10.1107/S0365110X56002370

C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev. 82, 403 (1951). https://doi.org/10.1103/PhysRev.82.403

S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. J. Sci. 45, 823 (1954). https://doi: org/10.1080/14786440808520496

F.Bushra , N.Acharya ,S. P. Sanyal, Structural, electronic, elastic and mechanical properties of ScNi, ScPd and ScPt: A FP-LAPW study, Advanced Materials Research 1047:27 (2014). https://doi: 10.4028/www.scientific.net/AMR.1047.27

J. Haines, J.M. Leger, G. Bocquillon, Synthesis and Design of Superhard Materials, Ann. Rev. Mater. Res. 31 (2001) 1. https://doi.org/10.1146/annurev.matsci.31.1.1

D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Technol. 8, 345 (1992). https://doi.org/10.1179/mst.1992.8.4.345

Downloads

Published

2022-11-01

How to Cite

[1]
M. Djamel-Eddine, K. BENCHERIF, and D. BENSAID, “First principle investigation of physical properties of MNiBi: (M = Sc, Y) half-Heusler compounds”, Rev. Mex. Fís., vol. 68, no. 6 Nov-Dec, pp. 061601 1–, Nov. 2022.