A comprehensive analysis on radiation shielding characteristics of borogypsum (boron waste) by Phy-X/PSD code

Authors

  • Murat AYGUN Bitlis Eren Unv.
  • Zeynep AYGUN Bitlis Eren Unv.

DOI:

https://doi.org/10.31349/RevMexFis.69.040401

Keywords:

Phy-X/PSD; radiation attenuation parameters; borogypsum

Abstract

In the present study, radiation shielding characteristics of the borogypsum, which is a waste generated during the boric acid production in Turkey, was analyzed. For this purpose, we used recently developed Phy-X/PSD software, which is provided to calculate shielding parameters such as mass attenuation coefficient, linear attenuation coefficient, half-value layer, tenth-value layer, effective atomic number, total atomic cross section, total electronic cross section, effective conductivity, effective electron number, buildup factors and fast neutron removal cross section in a wide photon energy range. Additionally, mass attenuation coefficients of borogypsum were compared with those of other radiation shielding materials (ordinary concrete, obsidian, pumice, clay) in order to give a significant evaluation about the radiation shielding capability of borogypsum. Half value layer and fast neutron removal cross section values are also evaluated by other materials. It is noticed that borogypsum has higher shielding potential than other reported shielding materials.  

References

U.K. Sevim, Y. Tumen, Strength and fresh properties of borogypsum concrete, Construct. Building. Mater. 48 (2013) 342- 347. https://doi.org/10.1016/j.conbuildmat.2013.06.054

K. Kunt, F. Dur, B. Ertinmaz, M. Yildirim, E.M. Derun, S. Piskin, Utilization of Boron Waste as an Additive for Cement Production, CBU J. Sci. 11 (2015) 383-389

R. Boncukoglu, T.M. Yılmaz, M.M. Kocakerim, V. Tosunoglu, Utilization of borogypsum as set retarder in Portland cement production, Cem. Concr. Res. 32 (2002) 471-5. https://doi.org/10.1016/S0008-8846(01)00711-6

I.F. Elbeyli, E.M. Derun, J. Gulen, S. Piskin, Thermal analysis of borogypsum and its effects on the physical properties of Portland cement, Cem. Concr. Res. 33 (2003) 1729-1735. https://doi.org/10.1016/S0008-8846(03)00110-8

Y. Erdogan, H. Genc, A. Demirbas, Utilization of borogysum for cement, Cem. Concr. Res. 22 (1992) 841-4. https://doi.org/10.1016/0008-8846(92)90108-8

T. Kavas, A. Olgun, Y. Erdogan, Setting and hardening of borogypsum-Portland cement clinker-fly ash blends. Studies on effects of molasses on properties of mortar containing borogypsum, Cem. Concr. Res. 35 (2005) 711-8. https://doi.org/10.1016/j.cemconres.2004.05.019

A. Demirbas, S. Karslıoglu, The effect of boric acid sludges containing borogypsum on properties of cement, Cem. Concr. Res. 25 (1995) 1381-4. https://doi.org/10.1016/0008-8846(95)00130-5

A. Demirbas, Recyciling of lithium from borogypsum by leaching with water and leaching kinetics, Resour. Conserv. Recycling 25 (1999) 125-31

A. Demirbas, H. Yuksek, I. Cakmak, M.M. Kucuk, M. Cengiz, M. Alkan, Recovery of boric acid from boronic wastes by leaching with water, carbon dioxide- or sulfur dioxide saturated water and leaching kinetics, Resour. Conserv. Recycling 28 (2000) 135-146. https://doi.org/10.1016/ S0921-3449(99)00039-7

I. Alp, H. Deveci, Y.H. Sungun, E.Y. Yazici, M. Savas, S. Demirci, Leachable characteristics of arsenical borogypsum wastes and their potential use in cement production, Environ. Sci. Technol. 43 (2009) 6939-43. https://doi.org/10.1021/es9013008

D. Demir, G. Keles. Radiation transmission of concrete including boron waste for 59.54 and 80.99 keV gamma rays. Nucl. Instr. Methods B 6 (2006) 501-4. https://doi.org/10.1016/j.nimb.2005.11.139

Y. Y. Celen, A. Evcin, I. Akkurt, N. C. Bezir, K. Günoglu, N. Kutu, Evaluation of boron waste and barite against radiation, Inter. J. Environmental Sci. Tech. 16 (2019) 5267-5274. https://doi.org/10.1007/s13762-019-02333-3

Y.Y. Celen, A. Evcin, Synthesis and Characterizations of Magnetite-Borogypsum for Radiation Shielding, Emerg. Mater. Res. 9 (2020) 1-7. https://doi.org/10.1680/jemmr.20.00098

E. Sakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020) 1-12. https://doi.org/10.1016/j.radphyschem.2019.108496

I. Han, L. Demir, Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies, Nucl. Instr. Methods B 267 (2009) 3-8. https://doi.org/10.1016/j.nimb.2008.10.004

I. Han, L. Demir, Studies on effective atomic numbers, electron densities from mass attenuation coefficients in TixCo1-x and CoxCu1-x alloys, Nucl. Instr. Methods B 267 (2009) 3505-3510. https://doi.org/10.1016/j.nimb.2009.08.022

H.C. Manjunatha, A study of gamma attenuation parameters in poly methyl methacrylate and Kapton, Radiat. Phys. Chem. 137 (2017) 254-259. https://doi.org/10.1016/j.radphyschem.2016.01.024

E. Sakar, Determination of photon-shielding features and build-up factors of nickel-silver alloys, Radiat. Phys. Chem. 172 (2020) 1-13. https://doi.org/10.1016/j.radphyschem.2020.108778

J. Wood, Computational methods in reactor shielding 2013, Elsevier

Y. Harima, An historical review and current status of buildup factor calculations and applications, Radiat. Phys. Chem. 41 (1993) 631-672

Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Validity of the geometric-progression formula in approximating gamma-ray buildup factors, Nucl. Sci. Engineer. 94 (1986) 24-35

ANSI/ANS 6.4.3. Gamma-ray Attenuation Coefficients and Buildup Factors for Engineering Materials. American Nucl Soc, La Grange Park, Illinois (1991)

M.J. Berger, J.H. Hubbell, XCOM: Photon Cross Sections Database, Web Version 1.2. National Institute of Standards and Technology Gaithersburg, MD, (1987) 20899, USA, available at. https://physics.nist.gov/xcom

F.C. Hila, G.P. Dicen, A.M.V. Javier-Hila, A. AsuncionAstronomo, N.R.D. Guillermo, R.V. Rallos, I.A. Navarrete, A.V. Amorsolo, Determination of Photon Shielding Parameters for Soils in Mangrove Forests, Philippine J. Sci. 150 (2021) 245-256

A.H. Almuqrin, M.I. Sayyed, B. Albarzan, A.M.V. JavierHila, N. Alwadai, A. Kumar, Mechanical and Gamma-Ray Interaction Studies of PbO-MoO3-Li2O-B2O3 Glass System for Shielding Applications in The Low Energy Region: A Theoretical Approach, Appl. Sci. 11 (2021) 5538

Z. Aygun, M. Aygun, Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes, J. Polytech. in press (2022). https://doi.org/10.2339/politeknik.1004657

I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Annl. Nucl. Energy 24 (1997) 1389- 1401

Z. Aygun, M. Aygun. A study on usability of Ahlat ignimbrites and pumice as radiation shielding materials, by using EpiXS code, Inter. J. Environ. Sci. Tech. 19 (2022) 5675-5688. https://doi.org/10.1007/s13762-021-03530-9

Z. Aygun, N. Yarbasi, M. Aygun, Spectroscopic and radiation shielding features of Nemrut, Pasinler, Sarikamis and Ikizdere obsidians in Turkey: Experimental and theoretical study, Ceramics Inter. 47 (2021) 34207-34217. https://doi.org/10.1016/j.ceramint.2021.08.330

Z. Aygun, M. Aygun, N. Yarbasi, A study on radiation shielding potentials of green and red clayey soils in Turkey reinforced with marble dust and waste tire, J. New Results Sci. 10 (2021) 46-59. https://doi.org/10.54187/jnrs.986038

B. Alım, Determination of Radiation Protection Features of the Ag2O Doped Boro-Tellurite Glasses Using Phy-X / PSD Software, J. Inst. Sci. Tech. 10 (2020) 202-213. https://doi.org/10.21597/jist.640027

K. Wang, J. Hu, T. Chen, J. Tang, Y. Zhai, Y. Feng, Z. Zhao, H. Fan, K. Wang, Radiation shielding properties of flexible liquid metal-GaIn alloy, Prog. Nucl. Energy 135 (2021) 103696. https://doi.org/10.1016/j.pnucene.2021.103696

I. Bilici, B. Aygun, C.U. Deniz, B. Oz, M.I. Sayyed, A. Karabulut, Fabrication of novel neutron shielding materials: Polypropylene composites containing colemanite, tincal and ulexite, Prog. Nucl. Energy 141 (2021) 103954. https://doi.org/10.1016/j.pnucene.2021.103954

Downloads

Published

2023-07-04

How to Cite

[1]
M. AYGUN and Z. AYGUN, “A comprehensive analysis on radiation shielding characteristics of borogypsum (boron waste) by Phy-X/PSD code”, Rev. Mex. Fís., vol. 69, no. 4 Jul-Aug, pp. 040401 1–, Jul. 2023.

Issue

Section

04 Atomic and Molecular Physics