Computational study of structural stability, elastic, electronic, magnetic and thermodynamic properties of the Rh2-based full-Heusler compounds: Rh2MnZ (Z = Sn, Pb, Tl) by FP-LAPW method

Authors

  • Boucif Benichou Department of Electronics, Faculty of Technology, University Hassiba Benbouali of Chlef, 02000 Chlef, Algeria
  • Halima Bouchenafa Department of Physics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef, 02000 Chlef, Algeria
  • Zakia Nabi Computational Materials Physics Laboratory (CMPL), Materials and Sustainable Development Department, Faculty of Exact Sciences, Djillali Liabès University of Sidi Bel Abbès, Sidi Bel Abbès 22000, Algeria
  • Badra Bouabdallah Computational Materials Physics Laboratory (CMPL), Materials and Sustainable Development Department, Faculty of Exact Sciences, Djillali Liabès University of Sidi Bel Abbès, Sidi Bel Abbès 22000, Algeria

DOI:

https://doi.org/10.31349/RevMexFis.68.060502

Keywords:

Ternary Heusler alloys, First-principles calculations, Elastic properties, magnetic properties, Electronic structure, DFT

Abstract

The structural, elastic, electronic and thermodynamic properties as well as the magnetism of the ternary full-Heusler alloys Rh2MnZ (X = Sn, Pb and Tl) have been investigated by using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The AlCu2Mn-type structure is energetically more favorable than the CuHg2Ti-type structure for all the compounds studied here and found to be are ferromagnetic. The electronic structures calculations are found to exhibit a metallic character for all the herein studied compounds Rh2MnZ (X = Sn, Pb and Tl) alloys. The magnetic properties reveal that the Mn atom is responsible for large magnetic moment. Moreover, the mechanical behavior shows that all studied compounds are mechanically stable, ductile and anisotopic in nature. The elastic and thermodynamic properties for Rh2MnTl compound have not yet been established. The obtained results for various properties of the series of Rh2MnZ (X = Sn, Pb and Tl) are compared with those found experimentally and theoretically.

References

I. Galanakis, P. Mavropoulos, P.H. Dederichs, Electronic structure and Slater-Pauling behaviour in half-metallic Heusler alloys calculated from first principles, J. Phys. D: Appl. Phys. 39 (2006) 765, http://doi:10.1088/0022-3727/39/5/S01

H.C. Kandpal, G.H. Fecher, C. Felser, Calculated electronic and magne tic properties of the half-metallic, transition metal based Heusler comp ounds, J. Phys. D: Appl. Phys. 40 (2007) 1507, https://doi.org/10.1088/0022-3727/40/6/S01

B. Benichou, H. Bouchenafa, Z. Nabi and B. Bouabdallah, Ab initio investigation of the electronic structure, elastic and magnetic properties of quaternary Heusler alloy Cu2MnSn1−xInx (x = 0, 0.25, 0.5, 0.75, 1), Rev. Mex. Fis. 65 (2019) 468, https://doi.org/10.31349/revmexfis.65.468

M. Ram, A. Saxena, A.E. Aly and A. Shankar, Halfmetallicity in new Heusler alloys Mn2ScZ (Z = Si, Ge, Sn), RSC Adv. 10 (2020) 7661, https://doi.org/10.1039/C9RA09303F

R. Murugeswari, M. Manikandan, R. Rajeswarapalanichamy and A. Milton Franklin Benial, Structural, elastic, magnetic and electronic properties of Ti-based Heusler alloys, Int. J. Mod. Phys. B 34 (2020) 2050055-1, https://doi.org/10.1142/S0217979220500551

M. Wakeel et al., Structural, electronic, and magnetic properties of pal ladium based full Heusler compounds: DFT study, Phys. B: Phys. Con dens. Matter. 608 (2021) 412716, https://doi.org/10.1016/j.physb.2020.412716

G.H. Fecher, Y. He, and C. Felser, Composition-dependent transition in the magnetocrystalline anisotropy of tetragonal Heusler alloys Rh2TSb (T = Fe, Co), Phys. Rev. Mater. 5 (2021) 054404-1, https://doi.org/10.1103/PhysRevMaterials.5.054404

R. Prakash and G. Kalpana, Prediction of structural, electronic and magnetic properties of full Heusler alloys Ir2YSi (Y = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) via first-principles calculation, AIP Adv. 11 (2021) 015042-1, https://doi.org/10.1063/9.0000101

O.T. Uto, P.O. Adebambo, J.O. Akinlami, S. Kenmoe, G.A. Adebayo, Electronic, structural, mechanical, and thermodynamic properties of CoYSb (Y = Cr, Mo, W) half-Heusler compounds as potential spintronic materials, Solids 3 (2022) 22, https://doi.org/10.3390/solids3010002

Y. Lee, J.Y. Rhee, B.N. Harmon, Generalized susceptibility of the magnetic shape-memory alloy Ni2MnGa, Phys. Rev. B 66 (2002) 054424-1, https://doi.org/10.1103/PhysRevB.66.054424

K. Ullakko, J.K. Huang, C. Kantner, V.V. Kokorin, R.C.O. Handley, Large magnetic field induced strains in Ni2MnGa single crystals, Appl. Phys. Lett. 69 (1996) 1966, https://doi.org/10.1063/1.117637

J.M. MacLaren, Role of alloying on the shape memory effect in Ni2Mn Ga, J. Appl. Phys. 91 (2002) 7801, https://doi.org/10.1063/1.1449440

K.A. Kilian, R.H. Victora, Electronic structure of Ni2MnIn for use in s pin injection, J. Appl. Phys. 87 (2000) 7064, https://doi.org/10.1063/1.372932

A. Ayuela, J. Enkovaara, K. Ullakko, R.H. Nieminen, Structural properties of magnetic Heusler alloys, J. Phys : Condens. Matter. 11 (1999) 2017, https://doi.org/10.1088/0953-8984/11/8/014

J.C. Suits, Structural instability in new magnetic Heusler compounds, Solid. State. Commun. 18 (1976) 423, https://doi.org/10.1016/0038-1098(76)90040-5

R.G. Pillay, P.N. Tandon, Hyperfine magnetic field at Sn in Heusler alloys Rh2MnSn and Rh2NiSn, Phys. Stat. Sol. (a) 45 (1978) K109, https://doi.org/10.1002/pssa.2210450248

R.G. Pillay, A.K. Grover, P.N. Tandon, L.D. Khoi, P. Veillet, NMR and Mössbauer effect studies in ferromagnetic Rh2MnPb and Rh2MnSb, J. Magn. Magn. Mater. 15/18 (1980) 647, https://doi.org/10.1016/0304-8853(80)90703-9

S.K. Dhar, A.K. Grover, S.K. Malik, R. Vijayaraghavan, Peaks in low field a.c. susceptibility of ferromagnetic Heusler alloys, Solid. State. Commun. 33 (1980) 545, http://doi.org/10.1016/0038-1098(80)90856-X

S. Jha et al., Site and probe dependence of hyperfine magnetic field in L21 Heusler alloys X2MnZ (X = Ni, Cu, Rh, Pd and Z = Ga, Ge, In, Sn, Pb), Hyperfine Interact. 16 (1983) 685, https://doi.org/10.1007/BF02147342

K.H.J. Buschow, P.G. van Engen, R. Jongebreur, Magnetooptical properties of metallic ferromagnetic materials, J. Magn. Magn. Mater. 38 (1983) 1, http://doi.org/10.1016/0304-8853(83)90097-5

H.P.J. Wijn, Magnetic properties of metals. Alloys and compounds of d-elements with main group elements. Part 2, ed. Landolt-BA˜ ¶rnstein - Group III Condensed Matter (Springer Materials, Germany, 1988), pp.75-184

Y. Kurtulus, R. Dronskowski, D. Samolyuk, V.P. Antropov, Electronic structure and magnetic exchange coupling in ferromagnetic full Heusler alloys, Phys. Rev. B 71 (2005) 014425, https://doi.org/10.1103/PhysRevB.71.014425

S. Berri et al., Study of structural, electronic and magnetic properties of Rh2MnX (X = Al, Ge and Sn) Heusler alloys using GGA-WC and GGA+U approaches, Phys. B : Condens. Matter. 418 (2013) 58, https://doi.org/10.1016/j.physb.2013.03.002

F.Z. Benkhelifa, A. Lekhal, S. Me´ abih, GGA and GGA+U Description of Structural, magnetic, and elastic properties of Rh2MnZ (Z = Ge, Sn, and Pb), J. Supercond. Nov. Magn. 26 (2013) 2573, http://doi.org/10.1007/s10948-012-1815-7

F.Z. Benkhelifa, A. Lekhal, S. Me´ abih, B. Abbar, B. Bouhafs, Electronic structure, magnetic and thermal properties of Rh2MnZ (Z = Ge, Sn, Pb) compounds under pressure from ab-initio quasi-harmonic method, J. Magn. Magn. Mater. 371 (2014) 130, http://dx.doi.org/10.1016/j.jmmm. 2014.07.048

M. Yin, P. Nash, Standard enthalpies of formation of selected Rh2YZ Heusler compounds, J. Alloy. Compd. 650 (2015) 925, https://doi.org/10.1016/j.jallcom.2015.08.054

M. Mebrek et al., Theoretical investigation of electronic structures, elastic, and magnetic properties of Rh2CrGe full-Heusler alloy, Acta. Phys. Pol. (a) 136 (2019) 454, http://doi.org/10.12693/APhysPolA.136.454

L. Boumia et al., Structural, electronic and magnetic properties of new full Heusler alloys Rh2CrZ (Z = Al, Ga, In): Firstprinciples calculatio ns, Chin. J. Phys. 59 (2019) 281, https://doi.org/10.1016/j.cjph.2019.04.002

J.C. Suits, New magnetic compounds with Heusler and Heusler-related structures, Phys. Rev. B 14 (1976) 4131, https://doi.org/10.1103/PhysRevB.14.4131

M. Pugacheva, A. Jezierski, Dependence of the magnetic moment on the local atomic order in Rh2MnX Heusler alloys, J. Magn. Magn. Mater. 151 (1995) 202, https://doi.org/10.1016/0304-8853(95)00372-X

A. Jezierski, M. Pugaczowa-Michalska, J.A. Morkowski, A. Szajek, Elec tronic structure and magnetic Properties of intermetallic alloys, Acta. P hys. Pol. (a) 91 (1997) 151, https://dx.doi.org/10.12693/APhysPolA.91.151

I. Galanakis, P.H. Dederichs, Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys, Phys. Rev. B 66 (2002) 174429, https://doi.org/10.1103/PhysRevB.66.174429

P. Klaer et al., Localized magnetic moments in the Heusler alloy Rh2 MnGe, J. Phys. D: Appl. Phys. 42 (2009) 084001, https://doi.org/10.1088/0022-3727/42/8/084001

S. Sanvito et al., Accelerated discovery of new magnets in the Heusler alloy family, Sci. Adv. 3 (2017) e1602241, https://doi.org/10.1126/sciadv.1602241

S.V. Faleev et al., Origin of the tetragonal ground state of Heusler com pounds, Phys. Rev. Appl. 7 (2017) 034022, https://doi.org/10.1103/PhysRevApplied.7.034022

F. Benzoudji et al., The preference of the ferromagnetic ordering for the novel Heusler Rh2MnTi compound, J. Supercond. Nov. Magn. 32 (2018) 1, https://dx.doi.org/10.1007/s10948-018-4837-y

F. Aguilera-Granja, R.H.L. Aguilera-del-Toro, J. Morán-López, A first principles systematic study of the structural, electronic, and magnetic properties of Heusler X2MnZ with X = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Pt, Au and Z = Al, Si, Ga, Ge, In and Sn, Mater. Res. Express. 6 (2019) 106118, https://dx.doi.org/10.1088/2053-1591/ab243c

A. Mentefa et al., First-principles calculations to investigate structural, electronic, elastic, magnetic, and thermodynamic properties of full-Heusler Rh2MnZ (Z = Zr, Hf), J. Supercond. Nov. Magn. 34 (2021) 269, https://doi.org/10.1007/s10948-020-05741-6

E. Güler, M. Güler, S. Ugur, and G. Ugur, First principles study of electronic, elastic, optical and magnetic properties of Rh2MnX (X = Ti, Hf, Sc, Zr, Zn) Heusler alloys, Int. J. Quantum. Chem. 121 (2021) e26606, https://doi.org/10.1002/qua.26606

J.C. Slater, Energy Band Calculations by the Augmented Plane Wave Method, Adv. Quant. Chem. 1 (1964) 35, https://doi.org/10.1016/S0065-3276(08)60374-3

P. Blaha et al., WIEN2k: an augmented plane wave plus local orbitals program for calculating crystal properties, (University of Technology, Vienna, Austria, 2019), pp. 1-287.

P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B. 136 (1964) B864, https://doi.org/10.1103/PhysRev.136.B864

W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange a nd Correlation Effects, Phys. Rev. 140 (1965) A1133, https://doi.org/10.1103/PhysRev.140.A1133

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approxim ation Made Simple, Phys. Rev. Lett. 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865

A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Comp. Mater. Sci. 28 (2003) 155, https://doi.org/10.1016/S0927-0256(03)00104-6

F.D. Murnaghan, The compressibility of media under extreme pressures, Proc Natl. Acad. Sci. USA 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.244

M. Born, K. Huang, Dynamical theory of crystal lattices (Clarendon Press, Oxford, 1954), pp. 837-838.

J. Wang, S. Vip, S.R. Phillpot, D. Wolf, Crystal instabilities at finite st rain, Phys. Rev. Lett. 71 (1993) 4182, https://doi.org/10.1103/PhysRevLett.71.4182

W. Voigt, Lehrbuch der kristallphysik (mit ausschluss der kristalloptik), (ed.) B G Teubner Verlag (Nachdruck der ersten Aufl, Germany, 1928), pp.1-978.

A. Reuss, Z. Angew, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle., Appl. Math. Mech. 9 (1929) 49, https://doi.org/10.1002/zamm.19290090104

R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65 (1952) 349, https://doi.org/10.1088/0370-1298/65/5/307

D.G. Pettifor, Theoretical predictions of structure and related properti es of intermetallics, Mater. Sci. Technol. 8 (1992) 345, https://doi.org/10.1179/mst.1992.8.4.345

S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954) 823, https://doi.org/10.1080/14786440808520496

J. Haines, J.M. Léger, G. Bocquillon, Synthesis and design of superhard materials, Annu. Rev. Mater. Res. 31 (2001) 1, https://doi.org/10.1146/annurev.matsci.31.1.1

F. Chu, Y. He, D.J. Thoma, T.E. Mitchell, Elastic constants of the C15 laves phase compound NbCr2, Scripta. Metali. Mater. 33 (1995) 1295, https://doi.org/10.1016/0956-716X(95)00357-2

P. Wachter, M. Filzmoser, J. Rebizant, Electronic and elastic properties of the light actinide tellurides, Phys. B: Condens. Matter. 293 (2001) 199, https://dx.doi.org/10.1016/ S0921-4526(00)00575-5

O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids. 24 (1963) 909, https://doi.org/10.1016/0022-3697(63)90067-2

E. Schreiber, O.L. Anderson, N. Soga, Elastic constants, and their measurements (McGraw-Hill Book Co., New York, 1973), pp. 82-125.

M.E. Fine, L.D. Brown, H.L. Marcus, Elastic constants versus melting temperature in metals, Scripta Metallurgica. 18 (1984) 951, https://doi.org/10.1016/0036-9748(84)90267-9

S.E. Kulkova, S.V. Eremeev, T. Kakeshita, S.S. Kulkov, G.E. Rudenski, The electronic structure and magnetic properties of full- and half-Heus ler alloys, Mater. Trans. 47 (2006) 599, https://doi.org/10.2320/matertrans.47.599

N. Kervan, S. Kervan, O. Canko, M. Atis, F. Taskin, Half-metallic ferri magnetism in the Mn2NbAl full-Heusler compound: a first-principles st udy, J. Supercond. Nov. Magn. 29 (2016) 187, https://doi.org/10.1007/s10948-015-3228-x

J.C. Suits, New magnetic compounds with Heusler and Heusler-related structures, AIP Conference Proceedings. 29 (1976) 587, https://dx.doi.org/10.1063/1.30466

R.G. Pillay, P.N. Tandon, H.G. Devare, N.K. Jaggi, K.R.P.M. Rao, Hyperfine interaction studies in ferromagnetic Rh2MnSn, Solid State Commun. 23 (1977) 439, https://dx.doi.org/10.1016/0038-1098(77)91003-1

Y. Adachi et al., Pressure effect on the Curie temperature of the Heusler alloys Rh2MnZ (Z = Sn, Ge), J. Alloys Compd. 383 (2004) 37, https://dx.doi.org/10.1016/j.jallcom.2004.04.003

S. Jha, R.D. Black, G.M. Julian, J.W. Blue, D.C. Liu, Hyperfine magnetic field at Cd impurity site in L21 Heusler alloys Rh2MnGe and Rh2MnPb by TDPAC technique, J. Appl. Phys. 50 (1979) 7507, https://dx.doi.org/10.1063/1.326881

M.A. Blanco, E. Francisco, V. Luaña, GIBBS: isothermal isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Computer. Phys. Commun. 158 (2004) 57, https://doi.org/10.1016/j.comphy.2003.12.001

S.A. Khandy, I. Islam, Z.S. Ganai, D.C. Gupta, K.A. Parrey, High-tem perature and high-pressure study of electronic and thermal properties of PbTaO3 and SnAlO3 metal perovskites by density functional theory calculations, J. Electron. Mater. 47 (2018) 436, https://doi.org/10.1007/s11664-017-5785-1

A.-T. Petit and P-L. Dulong, Recherche sur quelques points importants de la Théorie de la Chaleur, Ann. Chim. Phys. 10 (1819) 395; [English translation in Ann. Philos. 14 (1819) 189].

Downloads

Published

2022-11-01

How to Cite

[1]
B. Benichou, H. Bouchenafa, Z. Nabi, and B. Bouabdallah, “Computational study of structural stability, elastic, electronic, magnetic and thermodynamic properties of the Rh2-based full-Heusler compounds: Rh2MnZ (Z = Sn, Pb, Tl) by FP-LAPW method”, Rev. Mex. Fís., vol. 68, no. 6 Nov-Dec, pp. 060502 1–, Nov. 2022.