First-principles investigation of the structural, electronic and optical properties of Zn2NbN3

Authors

  • Sanae Hassine Faculty of Sciences Semlalia, Marrakech
  • Omar Farkad Faculty of Sciences Semlalia, Marrakech
  • Rabia Takassa Faculty of Sciences Semlalia, Marrakech
  • Fatima Elfatouaki Faculty of Sciences Semlalia , Marrakech
  • Oumaima Choukri Faculty of Sciences Semlalia , Marrakech
  • Youssef Ijdiaou Faculty of Sciences Semlalia, Marrakech
  • El Alami Ibnouelghazi Faculty of Sciences Semlalia, Marrakech
  • Driss Abouelaoualim faculty of Sciences Semlalia Marrakech

DOI:

https://doi.org/10.31349/RevMexFis.69.041002

Keywords:

Zn2NbN3 ternary compound, Band structure, Dielectric function, Refractive index, Density functional theory

Abstract

An ab initio study using density functional theory (DFT) is carried out to explore the structural, electronic, and optical
properties of Zn2NbN3 compound. The structural properties of these compound are determined by using the approximation
(GGA-PBE) as implemented in WIEN2k. The calculated lattice parameters of the Zn2NbN3 compound are found to be
a = 9.91 °A, b = 5.81 °A and c = 5.44 °A . The calculated electronic band structure and density of states indicate that the
Zn2NbN3 compound is a wide gap semiconductor with a direct band gap of 2.5 eV. The different contributions of the electronic
orbitals are discussed using the total and partial DOS with PBE and TB-mBJ approximations , which shows significant
contribution from the Nb-d and N-p. The optical properties such as dielectric function, refractive index, absorption coefficient,
and extinction coefficient are calculated and discussed.

References

F. Ponce, D. Bour, Nitride-based semiconductors for blue and green light-emitting devices, nature 386 (1997) 351-359.

S. R. Bauers et al., Ternary nitride semiconductors in the rocksalt crystal structure, Proceedings of the National Academy of Sciences 116 (2019) 14829-14834.

U. K. Mishra, P. Parikh, Y.-F. Wu, Algan/gan hemts-an overview of device operation and applications, Proceedings of the IEEE 90 (2002) 1022-1031.

S. Nakamura, The roles of structural imperfections in inganbased blue light-emitting diodes and laser diodes, Science 281 (1998) 956-961.

R. Trew, M. Shin, V. Gatto, High power applications for ganbased devices, Solid-State Electronics 41 (1997) 1561-1567.

K. Balasubramanian, S. V. Khare, and D. Gall, Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides, Acta Materialia 152 (2018) 175-185.

X.-J. Chen et al., Hard superconducting nitrides, Proceedings of the National Academy of Sciences 102 (2005) 3198-3201.

I. S. Khan, K. N. Heinselman, A. Zakutayev, Review of znsnn2 semiconductor material, Journal of Physics: Energy 2 (2020) 032007.

M. Wittmer, Properties and microelectronic applications of thin films of refractory metal nitrides, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 3 (1985) 1797- 1803.

Y. Hinuma et al., Discovery of earth-abundant nitride semiconductors by computational screening and highpressure synthesis, Nature communications 7 (2016) 1-10.

A. Yoshikawa, E. Ohshima, T. Fukuda, H. Tsuji, and K. Oshima, Crystal growth of gan by ammonothermal method, Journal of crystal growth 260 (2004) 67-72.

G. Kortüm, W. Braun, and G. Herzog, Principles and techniques of diffuse-reflectance spectroscopy, Angewandte Chemie International Edition in English 2 (1963) 333-341.

M. Mallmann, C. Maak, R. Niklaus, and W. Schnick, Ammonothermal synthesis, optical properties, and dft calculations of mg2pn3 and zn2pn3, Chemistry-A European Journal 24 (2018) 13963-13970.

A. Zakutayev, Synthesis of zn2nbn3 ternary nitride semiconductor with wurtzite-derived crystal structure, Journal of Physics: Condensed Matter 33 (2021) 354003.

A. Zakutayev, S. R. Bauers, and S. Lany, Experimental synthesis of theoretically predicted multivalent ternary nitride materials, Chemistry of Materials 34 (2022) 1418-1438.

M. Debbarma, S. Das, B. Debnath, D. Ghosh, S. Chanda, R. Bhattacharjee, S. Chattopadhyaya, Density functional study of elastic and thermal properties of cubic mercury-zincchalcogenide ternary alloys, Bulletin of Materials Science 43 (2020) 1-17.

P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and J. Luitz, Computer code wien2k, Vienna University of Technology (2001).

P. Blaha et al., wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties 60 (2001).

P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. Madsen, L. D. Marks, Wien2k: An apw+ lo program for calculating the properties of solids, The Journal of Chemical Physics 152 (2020) 074101.

O. Farkad, F. Elfatouaki, S. Hassine, Y. Ijdiyaou, E. Ibnouelghazi, D. Abouelaoualim, Structural, electronic and optical properties of ab bilayer graphene intercalated by sr atom: A first principles study, Diamond and Related Materials 126 (2022) 109082.

J. Toulouse, Review of approximations for the exchangecorrelation energy in density-functional theory, arXiv preprint arXiv:2103.02645 (2021).

H. Xiao, J. Tahir-Kheli, W. A. Goddard III, Accurate band gaps for semiconductors from density functional theory, The Journal of Physical Chemistry Letters 2 (2011) 212-217.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (1996) 3865.

F. Elfatouaki et al., A dft study of the structural, electronic and optical properties of csgei 2 br halide perovskite, in: 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), IEEE, 2020, pp. 1-4.

R. Takassa, O. Farkad, E. Ibnouelghazi, and D. Abouelaoualim, Structural and electronic properties of ndoping ultra-small diameter (3,3) armchair swcnt by using pbe and tb-mbj potentials, Applied Surface Science 563 (2021) 150283.

I. Khare, N. Szymanski, D. Gall, R. Irving, Electronic, optical, and thermoelectric properties of sodium pnictogen chalcogenides: A first principles study, Computational Materials Science 183 (2020) 109818.

N. Szymanski, V. Adhikari, M. Willard, P. Sarin, D. Gall, and S. Khare, Prediction of improved magnetization and stability in fe16n2 through alloying, Journal of Applied Physics 126 (2019) 093903.

G. Rehman et al., Electronic band structures of the highly desirable iii-v semiconductors: Tb-mbj dft studies, Journal of Electronic Materials 45 (2016) 3314-3323.

C. Sifi et al., First principle calculations of structural, electronic, thermodynamic and optical properties of pb1- xcaxs, pb1- xcaxse and pb1- xcaxte ternary alloys, Journal of Physics: Condensed Matter 21 (2009) 195401.

F. Drief, A. Tadjer, D. Mesri, H. Aourag, First principles study of structural, electronic, elastic and optical properties of mgs, mgse and mgte, Catalysis Today 89 (2004) 343-355.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, Dielectric function of colloidal lead chalcogenide quantum dots obtained by a kramers-krönig analysis of the absorbance spectrum, Physical Review B 81 (2010) 235319.

S. Azam et al., Dft study of the electronic and optical properties of ternary chalcogenides alx2te4, Materials Research Express 6 (2019) 116314.

M. Sotudeh, A. Boochani, S. S. Parhizgar, S. R. Masharian, Optical and electronic properties of zigzag boron nitride nanotube (6, 0): Dft study, International Nano Letters 10 (2020) 293-301.

B. Rameshe, M. Rajagopalan, B. Palanivel, Electronic structure, structural phase stability, optical and thermoelectric properties of sr2alm’o6 (m’= nb and ta) from first principle calculations, Computational Condensed Matter 4 (2015) 13-22.

M. Caid, H. Rached, A. Bentouaf, D. Rached, and Y. Rached, High-throughput study of the structural, electronic, and optical properties of short-period (bese) m/(znse) n superlattices based on dft calculations, Computational Condensed Matter 29 (2021) e00598.

Downloads

Published

2023-07-04

How to Cite

[1]
S. Hassine, “First-principles investigation of the structural, electronic and optical properties of Zn2NbN3”, Rev. Mex. Fís., vol. 69, no. 4 Jul-Aug, pp. 041002 1–, Jul. 2023.