Half-metallic and thermodynamic properties of new d 0 CsCaZ (Z= Ge, Sn and Pb) half Heusler alloys: A spin-based devices vision for the future

Authors

  • Fatima Bendahma Laboratory of Technology and Solid Properties, Abdelhamid Ibn Badis University, 27000 Mostaganem, Algeria
  • M. Mana Abdelhamid Ibn Badis University
  • M. Hammou Abdelhamid Ibn Badis University
  • S. Terkhi Abdelhamid Ibn Badis University
  • N. Benderdouche Abdelhamid Ibn Badis University
  • S. Bentata Mascara University

DOI:

https://doi.org/10.31349/RevMexFis.68.061004

Keywords:

DFT calculations; half-metallicity; thermodynamic properties; spintronic applications

Abstract

Density functional theory (DFT) was applied to investigate the structural, electronic, elastic, magnetic, thermodynamic and half-metallic properties of the newly d0 Heusler alloys (HAs) CsCaZ (Z= Ge, Sn and Pb). Spin-polarised calculations show that  the compounds studied are half-metallic with a magnetic moment of 1.00 μB at the equilibrium lattice parameter, which obeys the well-known Slater–Pauling rule Mtot = 8 – Zt. The half-metallic behavior of the compounds CsCaGe, CsCaSn and CsCaPb is predicted with respect to the equilibrium lattice constants for CsCaGe, CsCaSn and CsCaPb with a narrow band gap in the majority spin channel. Furthermore, the elastic constants (Cij) showed that these materials are ductile and anisotropic. In addition, the negative values of the calculated formation energy and cohesion energy indicate that CsCaZ (Z= Ge, Sn and Pb) are likely to be experimentally synthesized. Non-equilibrium Gibbs function is employed to calculate the thermodynamic properties through the quasi-harmonic Debye model in which the bulk modulus, heat capacity, Debye temperature, thermal expansion coefficient, and entropy are investigated at 0-20 Gpa pressure and 0-1200 K temperature ranges. The significant half-metallic behavior makes the CsCaZ (Z= Ge, Sn and Pb) compounds strong candidates for spintronic applications.

References

M. N. Baibich et al., Giant Magnetoresistance of (001) Fe / (001) Cr Magnetic Superlattices. Phys. Rev. Lett. 61 (1988) 2472. https://doi.org/10.1103/PhysRevLett.61.2472

A. Fert, P. Grunberg, A. Barth el emy, F. Petroff, W. Zinn, Layered magnetic structures : interlayer exchange coupling and giant magnetoresistance. J. Magn. Magn Mater. 140-144 (1995) 1. https://doi.org/10.1016/0304-8853(94)00880-9

K. Inomata et al., Highly spin-polarized materials and devices for spintronics. Sci. Technol. Adv. Mater. 9 (2008) 014101. https://doi.org/10.1088/1468-6996/9/1/014101

S. A. Wolf et al., Spintronics : A Spin-Based Electronics Vision for the Future. Science. 294 (2001) 1488. https://doi.org/10.1126/science.1065389

S. Kasai Ikhtiar, A. Itoh, Y. K. Takahashi, T. Ohkubo, S. Mitani, K. Hono, Magneto-transport and microstructure of Co2F e(Ga0.5Ge0.5)/Cu lateral spin valves prepared by topdown microfabrication process, J. Appl. Phys. 115 (2014) 173912. https://doi.org/10.1063/1.4874936

R. Farshchi and M. Ramsteiner, Spin injection from Heusler alloys into semiconductors : A materials perspective, J. Appl. Phys. 113 (2013)191101. https://doi.org/10.1063/1.4802504

T. Kimura, N. Hashimoto, S. Yamada, M. Miyao, K. Hamaya, Room-temperature generation of giant pure spin currents using epitaxial Co2FeSi spin injectors. NPG Asia Mater. 4 (2012)9. https://doi.org/10.1038/am.2012.16

W.-H. Xie, B.-G. Liu, D.G. Pettifor, Half-metallic ferromagnetism in transition metal pnictides and chalcogenides with wurtzite structure. Phys. Rev. B. 68 (2003)134407. https://doi.org/10.1103/PhysRevB.68.134407

J. E. Pask, L. H. Yang, C. Y. Fong, W.E. Pickett, S. Dag, Six low-strain zinc-blende half metals: An ab initio investigation, Phys. Rev. B. 67 (2003) 224420. https://doi.org/10.1103/PhysRevB.67.224420

R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Wurtzite NiO: A potential half-metal for wide gap semiconductors, Appl. Phys. Lett. 89 (2006) 082504. https://doi.org/10.1063/1.2335970

S. Amari, R. Mebsout, S. Mec¸abih, B. Abbar, B. Bouhafs, First- principle study of magnetic, elastic and thermal properties of full Heusler Co2MnSi, Intermetallics. 44 (2014) 26. https://doi.org/10.1016/j.intermet.2013.08.009

M. Shakil et al., Theoretical investigation of structural, magnetic and elastic properties of half Heusler LiCrZ (Z= P, As, Bi, Sb) alloys, Phys. B Condens. Matter. 575 (2019) 411677. https://doi.org/10.1016/j. physb.2019.411677

O. T. Uto, P. O. Adebambo, J. O. Akinlami, G. A. Adebayo, Predicting the stable Type-I phase of XMnSb (X= Co, Fe, Os) compounds and its thermodynamic, electronic and magnetic properties from first-principles calculations, Solid State Sci. 105 (2020) 106208. https://doi.org/10.1016/j.solidstatesciences.2020.106208

P. Rambabu, V. Kanchana, Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study, Solid State Sci. 80 (2018) 92. https://doi.org/10.1016/j.solidstatesciences.2018.03.026

H. Kato et al., Metallic ordered double-perovskite Sr2CrReO6 with maximal Curie temperature of 635 K, Appl, Phys. Lett. 81 (2002) 328. https://doi.org/10.1063/1.1493646

N. Zu, R. Li, R. Ai, Structural, electronic and magnetic properties and pressure-induced galf metallicity in double perovskite Ca2AOsO6 (A=Cr, Mo), J. Magn. Magn Mater. 467 (2018) 145. https://doi.org/10.1016/j.jmmm.2018.07.071

Z H. Liu et al., Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa, Appl. Phys. Lett. 82 (2003) 424. https://doi.org/10.1063/1.1534612

C. L. Tan, X. H. Tian, W. Cai, CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Effect of Fe on Martensitic Transformation of NbRu High-Temperature Shape Memory Alloys: Experimental and Theoretical Study, Chinese Phys. Lett. 25 (2008) 3372. https://doi.org/10.1088/0256-307X/25/9/074

L. Bainsla et al., Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy, Phys. Rev. B. 91 (2015) 104408. https://doi.org/10.1103/PhysRevB.91.104408

G Z. Xu et al., A new spin gapless semiconductors family: Quaternary Heusler compounds, EPL. 102 (2013) 17007. https://doi.org/10.1209/0295-5075/102/17007

Q. Gao, I. Opahle, and H B. Zhang, High-throughput screening for spin-gapless semiconductors in quaternary Heusler compounds, Phys. Rev. Materials. 3 (2019) 024410. https://doi.org/10.1103/PhysRevMaterials.3.024410

X W. Zhang, Theoretical design of multifunctional half-Heusler materials based on first-principles calculations, Chinese Phys. B. 27 (2018) 127101.

M. Hammou et al., Thermoelectric and Half-Metallic Behavior of the Novel Heusler Alloy RbCrC: Ab initio DFT Study, SPIN. 10 (2020) 2050029. https://doi.org/10.1142/S2010324720500290

X P. Wei, P F. Gao, Y L. Zhang, Investigations on Gilbert damping, Curie temperatures and thermoelectric properties in CoFeCrZ quaternary Heusler alloys, Curr. Appl. Phys. 20 (2020) 593. https://doi.org/10.1016/j.cap.2020.02.007

S. Chadov et al., Tunable multifunctional topological insulators in ternary Heusler compounds, Nat. Mater. 9 (2010) 541. https://doi.org/10.1038/nmat2770

A. Bouabca, H. Rozale, A. Amar, X. Wang, A. Sayade, and A. Chahed, First-principles study of new series of quaternary Heusler alloys CsSrCZ (Z= Si, Ge, Sn, P, As, and Sb), J. Magn. Magn. Mater. 419 (2016) 210. https://doi.org/10.1016/j.jmmm.2016.06.018

J. Du, L. Feng, X. Wang, Z. Qin, Z. Cheng, and L. Wang, Novel bipolar magnetic semiconducting and fully compensated ferrimagnetic semiconducting characters in newly designed LiMgPdSn-type compounds: KCaCX (X = O, S, and Se), J. Alloys Compd. 710 (2017)1. https://doi.org/10.1016/j.jallcom.2017.03.262

M. Yin, P. Nash, Standard enthalpies of formation of selected XYZ half-Heusler compounds, J. Chem. Thermodyn. 91 (2015) 1. https://doi.org/10.1016/j.jct.2015.07.016

A. Laref, E. S¸as¸ıoglu, I. Galanakis, Exchange interactions, spin ˇ waves, and Curie temperature in zincblende half-metallic spelectron ferromagnets: the case of CaZ (Z= N, P, As, Sb), J. Phys. Condens. Matter. 23 (2011) 296001. https://doi.org/10.1088/0953-8984/23/29/296001

H. Rozale, A. Amar, A. Lakdja, A. Moukadem, A. Chahed, Half-metallicity in the half-Heusler RbSrC, RbSrSi and RbSrGe compounds, J. Magn. Magn. Mater. 336 (2013) 83. https://doi.org/10.1016/j.jmmm.2013.02.024

H. Rozale, M. Khetir, A.Amar, A. Lakdja, A. Sayede, O. Benhelal, Ab-initio study of half-metallic ferromagnetism in the XCsSr (X= C, Si, Ge, and Sn) half-Heusler compounds, Superlattice. Microst. 74 (2014) 146. https://doi.org/10.1016/j.spmi.2014.06.017

R. Benabboun, D. Mesri, A. Tadjer, A. Lakdja, O. Benhelal, Half-metallicity ferromagnetism in half-Heusler XCaZ (X= Li, Na ; Z= B, C) compounds: an ab initio calculation, J Supercond Nov Magn. 28 (2015) 2881. https://doi.org/10.1007/s10948-015-3113-7

A. Abada, N. Marbouh, Study of new d0 half-metallic halfHeusler alloy MgCaB: first-principles calculations, J Supercond Nov Magn. 33 (2020) 889. https://doi.org/10.1007/s10948-019-05288-1

R. Umamaheswari, M. Yogeswari, G. Kalpana, Ab-initio investigation of half-metallic ferromagnetism in half-Heusler compounds XYZ (X= Li, Na, K and Rb; Y= Mg, Ca, Sr and Ba; Z= B, Al and Ga), J. Magn. Magn. Mater. 350 (2014) 167. https://doi.org/10.1016/j.jmmm.2013.09.019

M. Ahmad, Naeemullah, G. Murtaza, R. Khenata, S.B. Omran, A. Bouhemadou, Structural, elastic, electronic, magnetic and optical properties of RbSrX (C, SI, Ge) half-Heusler compounds, J. Magn. Magn. Mater. 377 (2015) 204. https://doi.org/10.1016/j.jmmm.2014.10.108

M. Safavi, M. Moradi, M. Rostami, Structural, electronic and magnetic properties of NaKZ (Z= N, P, As, and Sb) halfHeusler compounds : a first-principles study, J. Supercond. Nov. Magn. 30 (2017) 989. https://doi.org/10.1007/s10948-016-3865-8

J. S. Zhao et al., First-principles study of the structure, electronic, magnetic and elastic properties of halfHeusler compound LiXGe (X= Ca, Sr and Ba), Intermetallics. 89 (2017) 65. https://doi.org/10.1016/j.intermet.2017.04.011

M. Rostami, Half-metallic property of the bulk and (001) surfaces of MNaCs (M= P, As) half-Heusler alloys: A density functional theory approach, Surf. Sci. 674 (2018) 103. https://doi.org/10.1016/j.susc.2018.04.006

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133. https://doi.org/10.1103/PhysRev.140.A1133

K. Schwarz, P. Blaha, and G. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences, Comput. Phys. Commun. 147 (2002) 71. https://doi.org/10.1016/S0010-4655(02)00206-0

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, (Vienna, 2001)

J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865

F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc. Natl. Acad. Sci. USA. 30 (1944) 244.

F. Bendahma, M. Mana, S. Terkhi, S. Cherid, B. Bestani, S. Bentata, Investigation of high figure of merit in semiconductor XHfGe (X= Ni and Pd) half-Heusler alloys: Ab-initio study, Comput. Cond. Matter. 21 (2019) e00407. https://doi.org/10.1016/j.cocom.2019.e00407

G. Srivastava and D. Weaire, The theory of the cohesive energies of solids, Adv. Phys. 36 (1987) 463. https://doi.org/10.1080/00018738700101042

J. Du, L. Feng, X. Wang, Z. Qin, Z. Cheng, and L. Wang, Novel bipolar magnetic semiconducting and fully compensated ferrimagnetic semiconducting characters in newly designed LiMgPdSn-type compounds: KCaCX (X = O, S, and Se), J. Alloys Compd. 710 (2017) 1. https://doi.org/10.1016/j.jallcom.2017.03.262

M. Ram, A. Saxena, A. E. Aly and A. Shankar, Halfmetallicity in new Heusler alloys Mn2ScZ (Z = Si, Ge, Sn), RSC Adv. 10 (2020) 7661. https://doi.org/10.1039/C9RA09303F

J. H. Wang, S. Yip, S. R. Phillpot, D. Wolf, Crystal instabilities at finite strain, Phys. Rev. Lett. 71 (1993) 4182. https://doi.org/10.1103/PhysRevLett.71.4182

R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc A. 65 (1952) 349. https://doi.org/10.1088/0370-1298/65/5/307

S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. A. 45 (1954) 43. https://doi.org/10.1080/14786440808520496

I. N. Frantsevich, F. F. Voronov and S. A. Bokuta, Elastic Constants and Elastic Modulus of Metals and Insulators, eds. I. N. Frantsevich and N. Dumka, Kievl (1983) 52. A. Lakdja, H. Rozale, A. Chahed, O. Benhelal. Ferromagnetism in the half-heusler XCsBa compounds from firstprinciples calculations (X= C, Si, and Ge), J. Alloy. Compd. 564 (2013) 8. https://doi.org/10.1016/j.jallcom.2013.02.026

E. S¸as¸ıoglu, I. Galanakis, L. M. Sandratskii, P. Bruno, Stability of ferromagnetism in the half-metallic pnictides and similar compounds: a first-principles study, J. Phys. Condens. Matter. 17 (2005) 3915. https://doi.org/10.1088/0953-8984/17/25/018

R. Bentata et al., New p-type sp-based half-Heusler compounds LiBaX (X= Si, Ge) for spintronics and thermoelectricity via ab-initio calculations, J. Comput. Electron. 20 (2021) 1072. https://doi.org/10.1007/s10825-021-01702-x

L. Beldi, Y. Zaoui, K.O. Obodo, H. Bendaoud, B. Bouhafs, d0 Half-Metallic Ferromagnetism in GeNaZ (Z = Ca, Sr, and Ba) Ternary Half-Heusler Alloys: an Ab initio Investigation, J. Supercond. Novel Magn. 33 (2020) 3121. https://doi.org/10.1007/s10948-020-05563-6

M.A. Blanco, E. Francisco and V. Luana, GIBBS: isothermalisobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158 (2004)57. https://doi.org/10.1016/j.comphy.2003.12.001

M. Florez, J. M. Recio, E. Francisco, M. A. Blanco, A. Martın Pendas, First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B. 66 (2002) 144112. https://doi.org/10.1103/PhysRevB.66.144112

M.A. Blanco, A. MartAn Pendas, E. Francisco, J. M. Recio, R. Franco, Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3, J. Mol. Struct. (Theochem). 368 (1996) 245. https://doi.org/10.1016/S0166-1280(96)90571-0

E. Francisco, M. A. Blanco, G. Sanjurjo, Atomistic simulation of SrF2 Polymorphs, Phys. Rev. B, 63 (2001) 094107. https://doi.org/10.1103/PhysRevB.63.094107

A. Otero-de-la-Roza, D. Abbasi-Perez, V. Luana, Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation, Comput. Phys. Commun. 182 (2011) 2232. https://doi.org/10.1016/j.cpc.2011.05.009

C.M. Sung, M. Sung, Carbon nitride and other speculative superhard materials, Mater. Chem. Phys. 43 (1996) 1. https://doi.org/10.1016/0254-0584(95)01607-V

O. Sahnoun, H. Bouhani-Benziane, M. Sahnoun, M. Driz, C. Daul, Ab initio study of structural, electronic and thermodynamic properties of tungstate double perovskites Ba2MW O6 (M= Mg, Ni, Zn), Comput. Mater. Sci. 77 (2013) 316. https://doi.org/10.1016/j.commatsci.2013.04.053

P. Debye, Debye model, Ann. Phys. 39 (1912) 789. 64. R. Fox, The background to the discovery of Dulong and Petit’s law, British. J. History Sci. 4 (1968) 1. https://doi.org/10.1017/S0007087400003150.

Downloads

Published

2022-11-01

How to Cite

[1]
F. Bendahma, M. Mana, M. Hammou, S. Terkhi, N. Benderdouche, and S. Bentata, “Half-metallic and thermodynamic properties of new d 0 CsCaZ (Z= Ge, Sn and Pb) half Heusler alloys: A spin-based devices vision for the future”, Rev. Mex. Fís., vol. 68, no. 6 Nov-Dec, pp. 061004 1–, Nov. 2022.