Effect of Ce3+ on the morphology, composition, and thermal properties of single and core-shell polyethylene oxide electrospun fibers
DOI:
https://doi.org/10.31349/RevMexFis.69.021003Keywords:
Polymers, electrospinning, nanofiber, polyethylene oxide, cerium oxideAbstract
Cerium polymeric composites have novel applications in fuel cells, optical devices, gas sensors, catalysis, ultraviolet absorbers, hydrogen storage materials, and biomedicines. This study reports the fabrication of low-cost electrospun single and core-shell polyethylene oxide (PEO) doped with Cerium fibers fabricated in two moisture ambients. Scanning electron microscopy and atomic force microscopy revealed that obtaining the thinnest average fiber diameter requires 47-52 %RH and 2 % Cerium dopant. Using a PEO capping (shell fiber) allows the increment of Cerium in the inner matrix (core-fiber) to produce non-beading continuous fibers with 3.5% of the dopant. The undoped single or core-shell fibers presented a 52.7 to 54.2 % crystallinity, indecently of relative humidity used during the fabrication process. In contrast, the use of Cerium dopant up to 2% induces an increase in their crystallinity due to the formation of Ce-O species, enhancing their thermal properties, regardless of the moisture during manufacturing as was found with Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis.
References
Y. Li, X. Y. Yang, Y. Feng, Z. Y. Yuan, and B. L. Su, OneDimensional Metal Oxide Nanotubes, Nanowires, Nanoribbons, and Nanorods: Synthesis, Characterizations, Properties and Applications, Crit. Rev. Solid State 37 (2012) 1, https://doi.org/10.1080/10408436.2011.606512
R. M. Nezarati, M. B. Eifert, and E. Cosgriff-Hernandez, Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology, Tissue Eng. Part C-Me 19 (2013) 810, https://doi.org/10.1089/ten.tec.2012.0671
T. A. Saleha, P. Parthasarathy, and M. Irfan, Advanced functional polymer nanocomposites and their use in water ultra-purification, Trends Environ. Anal. Chem. 24 (2019) e00067, https://doi.org/10.1016/j.teac.2019.e00067
S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagstrom, P. Westbroek, and K. De Clerck, The effect of temperature and humidity on electrospinning, J. Mater. Sci. 44 (2009) 1357, http://dx.doi.org/10.1007/s10853-008-3010-6
Y. E. Aguirre-Chagala, V. M. Altuzar-Aguilar, J. G. Domínguez-Chávez, E. F. Rubio-Cruz, and C. O. Mendoza-Barrera, Influence of Relative Humidity on The Morphology of Electrospun Polymer Composites, Der Chem. Sinica 8 (2017) 83, https://www.imedpub.com/articles/influence-of-relative-humidity-on-themorphology-of-electrospun-polymercomposites.php?aid=18380
T. A. Saleha, P. Parthasarathy, and M. Irfan, Advanced functional polymer nanocomposites and their use in water ultra-purification, Trends Environ. Anal. 24 (2019) e00067, https://doi.org/10.1016/j.teac.2019.e00067
N. Thakur, P. Manna, and J. Das, Synthesis and biomedical applications of nanoceria, a redox active nanoparticle, J. Nanobiotechnol. 17 (2019) 84, https://doi.org/10.1186/s12951-019-0516-9
J. Pelipenko, J. Kristl, B. Jankovic, S. Baumgartner, and P. Kocbek, The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers, Int. J Pharmaceut. 456 (2013) 125, https://doi.org/10.1016/j.ijpharm.2013.07.078
C. I. Williams et al., Cerium(III) Nitrate Containing Electrospun Wound Dressing for Mitigating Burn Severity, Polymers. 13 (2021) 3174, https://doi.org/10.3390/polym13183174
H. Boudellioua, Y. Hamlaoui, L. Tifouti, and F. Pedraza, Effects of polyethylene glycol (PEG) on the corrosion inhibition of mild steel by cerium nitrate in chloride solution. Appl. Surf. Sc. 473 (2019) 449, https://doi.org/10.1016/j.apsusc.2018.12.164
M. Zatoń, J. Rozière, and D. J. Jones, Mitigation of PFSA membrane chemical degradation using composite cerium oxidePFSA nanofibres, J. Mater. Chem. A. 5 (2017), 5390, https://doi.org/10.1039/c6ta10977b
M. Richard-Lacroix and C. Pellerin, Raman spectroscopy of individual poly(ethylene oxide) electrospun fibers: Effect of the collector on molecular orientation, Vib. Spectrosc. 91 (2017) 92, https://doi.org/10.1016/j.vibspec.2016.09.002
C. Lu et al., Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO), Polymer 115 (2017) 52, https://doi.org/10.1016/j.polymer.2017.02.024
J. A. Ajao, A. A. Abiona, S. Chigome, A. Y. Fasasi, G. A. Osinkolu, and M. Maaza, Electric-magnetic field-induced aligned electrospun poly (ethylene oxide) (PEO) nanofibers, J. Mat. Sci. 45 (2010) 2324, https://doi.org/10.1007/s10853-009-4196-y
X. Liu et al., Fabrication and Properties of 5% CeDoped BaTiO3 Nanofibers-Based Ceramic, J. Electron. Mater. 47 (2018) 1099, https://doi.org/10.1007/s11664-017-5862-5
G. Kwak, G. H. Lee, S. H. Shim, and K.B. Yoon, Fabrication of Light-Guiding Core/Sheath Fibers by Coaxial Electrospinning, Macromol. Rap. Commun. 29 (2008) 815, https://doi.org/10.1002/marc.200800065
M. Richard-Lacroix and C. Pellerin, Raman spectroscopy of individual poly(ethylene oxide) electrospun fibers: Effect of the collector on molecular orientation, Vib. Spectrosc. 91 (2017) 92, https://doi.org/10.1016/j.vibspec.2016.09.002
J. H. Yu, S. V. Fridrikh, and G. C. Rutledge, Production of Submicrometer Diameter Fibers by Two-Fluid Electrospinning, Adv. Mater. 16 (2004) 1562, https://doi.org/10.1002/adma.200306644
R. Sharma, N. Singh, S. Tiwari, S. K. Tiwari, and S. R. Dhakate, Cerium functionalized PVA-chitosan composite nanofibers for effective remediation of ultra-low concentrations of Hg(II) in water, RSC Adv. 5 (2015) 16622, https://doi.org/10.1039/c4ra15085f
R. S. McLean and B. B. Sauer, Tapping-Mode AFM Studies Using Phase Detection for Resolution of Nanophases in Segmented Polyurethanes and Other Block Copolymers, Macromolecules 30 (1997) 8314, https://doi.org/10.1021/ma970350e
Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, and A. Greiner, Compound core-shell polymer nanofibers by coelectrospinning, Adv. Mater. 15 (2003) 1929, https://doi.org/10.1002/adma.200305136
T. Kim et al., Highly Reproducible Thermocontrolled Electrospun Fiber Based Organic Photovoltaic Devices, ACS Appl. Mater. Interfaces 7 (2015) 4481, https://doi.org/10.1021/am508250q
P. Su et al., Electrospinning of chitosan nanofibers: The favorable effect of metal ions, Carbohydr. Polym. 84 (2011) 239, https://doi.org/10.1016/j.carbpol.2010.11.031
A. Z. Wang, W. Ye, X. Luo, and Z. Wang, Fabrication of Superhydrophobic and Luminescent Rare Earth/Polymer complex Films, Sci. Rep. 6 (2016) 24682, https://doi.org/10.1038/srep24682
S. Yang, Z. Liu, Y. Liu, and Y. Jiao, Effect of molecular weight on conformational changes of PEO: an infrared spectroscopic analysis, J. Mater. Sci. 50 (2015) 1544, https://doi.org/10.1007/s10853-014-8714-1
J. I. Marcos, E. Orlandi, and G. Zerbi, Poly(ethylene oxide)- poly(methyl methacrylate) interactions in polymer blends: an infra-red study, Polymers-Basel 31 (1990) 1899, https://doi.org/10.1016/0032-3861(90)90014-P
F. Gu, H. Bua, and Z. Zhang, A unique morphology of freezedried poly(ethylene oxide) and its transformation, PolymersBasel 41 (2000) 7605, https://doi.org/10.1016/S0032-3861(00)00139-7
Y. Takahashi, I. Sumita, and H. Tadokoro, Structural studies of polyethers. IX. Planar zigzag modification of poly(ethylene oxide), J. Polym. Sci. Pol. Phys. 11 (1973) 2113, https://doi.org/10.1002/pol.1973.180111103
J. Xu, Q. Xiong, G. Liang, X. Shen, H Zou, and W. Xu, IonPolymer Interactions in SmCl3(H2O)6 Doped Poly(ethylene oxide) Electrolytes, J. Macromol. Sci. B 48 (2009) 856, https://doi.org/10.1080/00222340902958778
G. Liang, J. Xu, W. Xu, X. Shen, H. Zhang, and M. Yao, Effect of filler-polymer interactions on the crystalline morphology of PEO-based solid polymer electrolytes by Y2O 3 nano-fillers, Polym. Compos. 32 (2011) 511, https://doi.org/10.1002/pc.21058
C. Bergeron, E. Perrier, A. Potier, and G. Delmas, A Study of the Deformation, Network, and Aging of Polyethylene Oxide Films by Infrared Spectroscopy and Calorimetric Measurements, Int. J. Spectrosc. 2012 (2012) ID 432046. https://doi.org/10.1155/2012/432046
D. J. Goebber et al., Infrared Spectroscopy of the Microhydrated Nitrate Ions NO3 -(H2O)1-6, J. Phys. Chem. A 113 (2009) 7584, https://doi.org/10.1021/ jp9017103
L. Marzi et al., Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro, Int. J. Mol. Sci. 14 (2013) 3065, https://doi:10.3390/ijms14023065G
Jayakumar, A. A. Irudayaraj, and A. D. Raj, Investigation on the synthesis and photocatalytic activity of activated carbon-cerium oxide (AC-CeO2 ) nanocomposite, Appl. Phys. A 125 (2019) 742, https://doi.org/10.1007/s00339-019-3044-4
K. A. Narh, L. Jallo, and K. Y. Rhee, The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide, Polymer Composites, 29 (2008) 809, https://doi.org/10.1002/pc.20567
C. Lu et al., Thermal conductivity of electrospinning chainaligned polyethylene oxide (PEO), Polymer 115 (2017) 52, https://dx.doi.org/10.1016/j.polymer.2017.02.024
Y. T. Shieh, G. L. Liu, K. C. Hwang, and C. C. Chen, Crystallization, melting and morphology of PEO in PEO/MWNT-gPMMA blends, Polymer 46 (2005) 10945, https://doi.org/10.1016/j.polymer.2005.09.022
A. A. Baqer et al., Synthesis and characterization of binary (CuO)0.6(CeO2 )0.4 nanoparticles via a simple heat treatment method, Results in Physics 9 (2018) 471, https://doi.org/10.1016/j.rinp.2018.02.079
S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, and S. Maensiri, Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route, Materials Chemistry and Physics 115 (2009) 423, https://doi.org/10.1016/j.matchemphys.2008.12.031
C. Hernandez et al., Performance evaluation of Ce3+ doped flexible PVDF fibers for efficient optical pressure sensors, Sensors and Actuators A: Physical 298 (2019) 111595, https://doi.org/10.1016/j.sna.2019.111595
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Luis A. Hoyos-Lima, Victor Altuzar, Josué F. Perzábal-Domínguez, Severino Muñoz-Aguirre, Aldo Y. Tenorio-Barajas, Martha A. Palomino-Ovando, Claudia O. Mendoza-Barrera
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.