Hydrogenic impurity effect on optical properties of Wannier-Mott exciton confined in a spherical quantum dot with Kratzer potential under magnetic field


  • . Varsha University of Delhi
  • Rajesh Giri University of Delhi
  • Monika Arora University of Delhi
  • Vinod Prasad University of Delhi




Wannier-Mott exciton, quantum dot, magnetic field, linear and non-linear optical absorption coefficients, refractive index changes


Confinement effects of Kratzer potential on a Wannier-Mott Exciton(W-M) are studied in a spherical quantum dot(QD) in the presence of a static magnetic field. Time independent Schr$\ddot{o}$dinger equation is solved numerically to obtain the energy states. The excitonic transitions so realized have been used to explore the non-linear optical properties that are important for optical characterization of materials such as the optical absorption coefficients (ACs) and refractive index changes (RICs). Impact of magnetic field, strength of the laser field and transition parameters using familiar compact density matrix approach are also analyzed. It has been observed that optical properties get radically modified under confinement effects. Also, the shift of degeneracy of different excitonic energy levels with the magnetic field in confinement potential has been reported for the first time for W-M exciton in the spherical quantum dot, the study that may have crucial input to the literature and myriad of practical implications.


W. Yao, Z. Yu, Y. Liu, B. Jia, Linear and nonlinear optical absorption coefficients and refractive index changes in strained GaN/AlN quantum dots, Phys. E Low-Dimensional Syst. Nanostructures. 41 (2009) 1382. https://doi.org/10.1016/j.physe.2009.03.003.

E. Feddi, A. Talbi, M.E. Mora-Ramos, M. El Haouari, F. Dujardin, C.A. Duque, Linear and nonlinear magnetooptical properties of an off-center single dopant in a spherical core/shell quantum dot, Phys. B Condens. Matter. 524 (2017) 64. https://doi.org/10.1016/j.physb.2017.08.057.

A.D. Yoffe, Advances in Physics Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems, Adv. Phys. 50 (2001) 1. https://doi.org/10.1080/00018730010006608.

G. T. Einevoll, Confinement of excitons in quantum dots, Phys. Rev. B, 45, (1992) 7. https://doi.org/10.1103/PhysRevB.45.3410.

T. Chakraborty, Nanoscopic quantum rings: a new perspective, in Advance in Solid State Physics, edited by B. Kramer (Springer, Berlin, Heidelberg, 2003), Vol. 43, pp. 79-94, https://doi.org/10.1007/978-3-540-44838-9$_6$.

B. C¸ akir, Y. Yakar, A. Özmen, M.Ö. Sezer, M. Sahin, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Superlattices Microstruct. 47 (2010) 556. https://doi.org/10.1016/j.spmi.2009.12.002.

I. Karabulut, Ü. Atav, H. Safak, M. Tomak, Linear and nonlinear intersubband optical absorptions in an asymmetric rectangular quantum well, Eur. Phys. J. B. 55 (2007) 283. https://doi.org/10.1140/epjb/e2007-00055-1.

K. L. Jahan, A. Boda and A. Chatterjee, Ground state energy of an exciton in a spherical quantum dot in the presence of an external magnetic field, AIP Conf. Proc. 1661 (2015) 080008. https://doi.org/10.1063/1.4915399.

J. Florez, and A. Camacho, Excitonic effects on the second order nonlinear optical properties of semi-spherical quantum dots, Nanoscale Res. Lett. 6 (2011) 1. https://doi.org/10.1186/1556-276X-6-268.

V. Prasad, P. Silotia, Effect of laser radiation on optical properties of disk shaped quantum dot in magnetic fields, Phys. Lett. Sect. A Gen. At. Solid State Phys. 375 (2011) 3910. https://doi.org/10.1016/j.physleta.2011.09.010.

L. Shi, Z.W. Yan, Optical properties of an exciton trapped by an ionized donor in ellipsoidal quantum dots under electric field and hydrostatic pressure, Int. J. Mod. Phys. B. 33 (2019) 1. https://doi.org/10.1142/S021797921950108X.

G. Grosso and G. P. Parravicini, Chapter 1 - Electrons in OneDimensional Periodic Potentials, Solid State Physics (Elsevier Science, Amsterdam, 2000), http://dx.doi.org/10.1016/B978-0-12-385030-0.00001-3.

A.L. Roest, J.J. Kelly, D. Vanmaekelbergh, E.A. Meulenkamp, Staircase in the Electron Mobility of a ZnO Quantum Dot Assembly due to Shell Filling, Phys. Rev. Lett. 89 (2002) 1. https://doi.org/10.1103/PhysRevLett.89.036801.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu, A facile one-step method to produce craphene-CdS quantum dot nanocomposites as promising optoelectronic materials, Adv. Mater. 22 (2010) 103. https://doi.org/10.1002/adma.200901920.

L. Dallali, S. Jaziri, J. El Haskouri, P. Amoros, Optical ´ properties of exciton confinement in spherical ZnO quantum dots embedded in SiO2 matrix, Superlattices Microstruct. 46 (2009) 9076. https://doi.org/10.1016/j.spmi.2009.10.009.

L. Lu, W. Xie, Z. Shu, Combined effects of hydrostatic pressure and temperature on nonlinear properties of an exciton in a spherical quantum dot under the applied electric field, Phys. B Condens. Matter. 406 (2011) 3735. https://doi.org/10.1016/j.physb.2011.06.081.

I. Karabulut, S. Baskoutas, Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity, J. Appl. Phys. 103 (2008) 1. https://doi.org/10.1063/1.2904860.

G. Safarpour, A. Zamani, M.A. Izadi, H. Ganjipour, Laser radiation effect on the optical properties of a spherical quantum dot confined in a cylindrical nanowire, J. Lumin. 147 (2014) 295. https://doi.org/10.1016/j.jlumin.2013.11.053.

B. Akbarnavaz Farkoush, G. Safarpour, A. Zamani, Linear and nonlinear optical absorption coefficients and refractive index changes of a spherical quantum dot placed at the center of a cylindrical nano-wire: Effects of hydrostatic pressure and temperature, Superlattices Microstruct. 59 (2013) 66. https://doi.org/10.1016/j.spmi.2013.03.024.

K.L. Jahan, A. Boda, I. V. Shankar, C.N. Raju, A. Chatterjee, Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers, Sci. Rep. 8 (2018) 1. https://doi.org/10.1038/s41598-018-23348-9.

M. Boero, J. M. Rorison, G. Duggan, and J. C. Inkson, A detailed theory of excitons in quantum dots, Surf. Sci. 377-379 (1997) 371-375. https://doi.org/10.1016/S0039-6028(96)01420-3.

A. O. Govorov, A. V. Kalameitsev, R. Warburton, K. Karrai, S. E. Ulloa, Excitons in quantum-ring structures in a magnetic field: Optical properties and persistent currents, Phys. E LowDimensional Syst. Nanostructures. 13 (2002) 297. https://doi.org/10.1016/S1386-9477(01)00542-2.

W. Que, Excitons in quantum dots with parabolic confinement, Phys. Rev. B. 45 (1992) 11036. https://doi.org/10.1103/PhysRevB.45.11036.

B. C¸ akir, Y. Yakar, A. Özmen, Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential, Phys. B Condens. Matter. 458 (2015) 138. https://doi.org/10.1016/j.physb.2014.11.026.

A. Galiautdinov, Ground state of an exciton in a threedimensional parabolic quantum dot: Convergent perturbative calculation, Phys. Lett. Sect. A Gen. At. Solid State Phys. 382 (2018) 72. https://doi.org/10.1016/j.physleta.2017.11.001.

R. Khordad, Use of modified Gaussian potential to study an exciton in a spherical quantum dot, Superlattices Microstruct. 54 (2013) 7. https://doi.org/10.1016/j.spmi.2012.10.014.

M. Molski, J. Konarski, Modified Kratzer-Fues Formula for Rotation-Vibration Energy of Diatomic Molecules, Acta Phys. Pol. A. 82 (1992) 927. https://doi.org/10.12693/aphyspola.82.927.

C. Berkdemir, A. Berkdemir, J. Han, Bound state solutions of the Schrödinger equation for modified Kratzer’s molecular potential, Chem. Phys. Lett. 417 (2006) 326. https://doi.org/10.1016/j.cplett.2005.10.039.

S.A. Najafizade, H. Hassanabadi, S. Zarrinkamar, Nonrelativistic Shannon information entropy for Kratzer potential, Chinese Phys. B. 25 (2016) 040301. https://doi.org/10.1088/1674-1056/25/4/040301.

L. Fortunato, A. Vitturi, New analytic solutions of the collective Bohr Hamiltonian for a β-soft, β-soft axial rotor, J. Phys. G. Nucl. Part. Phys. 30 (2004) 627. https://doi.org/10.1088/0954-3899/30/5/006.

E.D. Filho, R.M. Ricotta, Morse potential energy spectra through the variational method and supersymmetry, Phys. Lett. Sect. A Gen. At. Solid State Phys. 269 (2000) 269. https://doi.org/10.1016/S0375-9601(00)00267-X.

E. Castro, J.L. Paz, P. Martín, Analytical approximations to the eigenvalues of the Morse potential with centrifugal terms, J. Mol. Struct. THEOCHEM. 769 (2006) 15. https://doi.org/10.1016/j.theochem.2005.11.034.

F. Ungan, J.C. Martínez-Orozco, R.L. Restrepo, M.E. Mora Ramos, The nonlinear optical properties of GaAs-based quantum wells with Kratzer-Fues confining potential: Role of applied static fields and non-resonant laser radiation, Optik (Stuttg). 185 (2019) 881. https://doi.org/10.1016/j.ijleo.2019.03.129.

D.A. Baghdasaryan, E.S. Hakobyan, D.B. Hayrapetyan, H.A. Sarkisyan, E.M. Kazaryan, Nonlinear Optical Properties of Cylindrical Quantum Dot with Kratzer Confining Potential, J. Contemp. Phys. 54 (2019) 46. https://doi.org/10.3103/S1068337219010067.

K. Batra, V. Prasad, Spherical quantum dot in Kratzer confining potential: study of linear and nonlinear optical absorption coefficients and refractive index changes, Eur. Phys. J. B. 91 (2018) 298. https://doi.org/10.1140/epjb/e2018-90432-x.

M. Heddar, M. Moumni, M. Falek, Non-Relativistic and Relativistic Equations for the Kratzer Potential plus a Dipole in 2D Systems, ArXiv. (2019).

A. Dehyar, G. Rezaei, A. Zamani, Electronic structure of a spherical quantum dot: Effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields, Phys. E Low-Dimensional Syst. Nanostructures. 84 (2016) 175. https://doi.org/10.1016/j.physe.2016.05.038.

Varsha, P. Silotia, V. Prasad, Study of optical properties of Wannier-Mott exciton in spherical quantum dot in Kratzer potential, 3Rd Int. Conf. Condens. Matter Appl. Phys. 2220 (2020) 020154. https://doi.org/10.1063/5.0002124.

H.F. Kisoglu, Non-relativistic analytical solutions of the Kratzer potential for a perturbed system in a magnetic field, Eur. Phys. J. Plus. 134 (2019) 460. https://doi.org/10.1140/epjp/i2019-12970-9.

J.L. Marín, R. Riera and S A Cruz, Confinement of excitons in spherical quantum dots, J. Phys.: Condens. Matter 10, (1998) 1349. http://iopscience.iop.org/0953-8984/10/6/017.

A. Anitha, M. Arulmozhi, Exciton binding energy in a pyramidal quantum dot, Pramana-J. Phys. 90 (2018) 1. https://doi.org/10.1007/s12043-018-1548-7.

A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel, 1988, http://dx.doi.org/10.1007/978-1-4757-1595-8.

J. Pliva, on a Modified Kratzer Potential, J. Mol. Spectrosc. 14 (1999) 7. 44. P. Silotia, H. Joshi, V. Prasad, Multiple Quantum Well in static magnetic field and intense laser pulses, Phys. Lett. Sect. A Gen. At. Solid State Phys. 378 (2014) 3561. https://doi.org/10.1016/j.physleta.2014.10.007.

V. V. Nautiyal, P. Silotia, Second harmonic generation in a disk shaped quantum dot in the presence of spinorbit interaction, Phys. Lett. Sect. A Gen. At. Solid State Phys. 382 (2018) 2061. https://doi.org/10.1016/j.physleta.2018.05.017.

M.R.K. Vahdani, G. Rezaei, Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots, Phys. Lett. Sect. A Gen. At. Solid State Phys. 373 (2009) 3079. https://doi.org/10.1016/j.physleta.2009.06.042.

M.R.K. Vahdani, G. Rezaei, Intersubband optical absorption coefficients and refractive index changes in a parabolic cylinder quantum dot, Phys. Lett. Sect. A Gen. At. Solid State Phys. 374 (2010) 637. https://doi.org/10.1016/j.physleta.2009.11.038.

K.J. Oyewumi, Analytical solutions of the Kratzer-Fues potential in an arbitrary number of dimensions, Found. Phys. Lett. 18 (2005) 75. https://doi.org/10.1007/s10702-005-2481-9.




How to Cite

. Varsha, R. Giri, M. Arora, and V. Prasad, “Hydrogenic impurity effect on optical properties of Wannier-Mott exciton confined in a spherical quantum dot with Kratzer potential under magnetic field”, Rev. Mex. Fís., vol. 68, no. 5 Sep-Oct, pp. 050504 1–, Aug. 2022.