Phase stability, mechanical, electronic, magnetic and thermodynamic properties of the Pd2PrX(X=Cl, F) compounds: An Ab-initio study

Authors

  • Saadiya Benatmane Université Abdelhamid Ibn Badis de Mostaganem
  • M. Affane Université Abdelhamid Ibn Badis de Mostaganem
  • Y. Bouali University of Science and Technology Houari Boumediene
  • B. Bouadjemi Université Abdelhamid Ibn Badis de Mostaganem
  • S. Cherid Université Abdelhamid Ibn Badis de Mostaganem
  • W. Benstaali Université Abdelhamid Ibn Badis de Mostaganem

DOI:

https://doi.org/10.31349/RevMexFis.69.011003

Abstract

Many of the known examples of half-metallic ferromagnets HMF are oxides, sulfides, or Heusler alloys have attracted some interest for their potential use in spintronics. In order to achieve such understanding we have performed an ab-initio calculations with spin polarization using plane-wave pseudo potential technique based on the density-functional theory (DFT), the exchange-correlation potential was treated with the generalized gradient approximation (PBE-GGA), whereas for the treatment of on-site electron-electron correlations the PBE-GGA+U approximation (where U is the Hubbard Coulomb energy term) are applied for the calculation of the structural, electronic, elastic and magnetic properties of Pd2PrX (X=Cl, F). The results showed that for Pd2PrCl and Pd2PrF, Hg2CuTi-type structure is energetically more stable than Cu2MnAl-type structure at the equilibrium volume. Electronically, Pd2PrCl and Pd2PrF exhibit half-metallicity with small band gaps of 0.06 and 0.25eV respectively with GGA-PBE+U in the spin-down channels whereas spin-up channels are conducting. The calculated total magnetic moment of 2.00 μB per formula unit is very close to integer value and agree well with the Slater-Pauling rules ( Mtot=34-Ztot), where the magnetic moment is basically carried by Pr atoms. However, the elastic properties show that Pd2PrX (X=Cl, F) compounds are ductile and anisotropic according to the analysis of B/G and Cauchy’s pressure. The Thermodynamic properties were also analyzed using the quasi-harmonic Debye model. Both the compounds are found structurally stable.

References

I. Zutic, J. Fabian, and S.D. Sarma, Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76 (2004) 323, https://doi.org/10.1103/RevModPhys.76.323

A. Hirohata, and K. Takanashi, Future perspectives for spintronic devices. J. Phys. D: Appl. Phys 47 (2014) 193001, http://iopscience.iop.org/0022-3727/47/19/193001

S. Benatmane, and B. Bouhafs. Investigation of new d0 halfmetallic full-heusler alloys N2BaX (X= Rb, Cs, Ca and Sr) using first-principle calculations. Computational Condensed Matter, 19 (2019) e00371, 2019, https://doi.org/10.1016/j.cocom.2019.e00371

K. Kilian, and R. Victora. Electronic structure of Ni2MnIn for use in spin injection. J. Appl. Phys., 87 (2000) 7064, https://doi.org/10.1063/1.372932

K.M. Wong. Study of the Electronic Structure of Individual Free-Standing Germanium Nanodots Using Spectroscopic Scanning Capacitance Microscopy. Jpn. J. Appl. Phys., 48 (2009) 085002, https://iopscience.iop.org/article/10.1143/JJAP.48.085002

K. Wong, W. Chim, J. Huang, and L. Zhu. Scanning capacitance microscopy detection of charge trapping in free-standing germanium nanodots and the passivation of hole trap sites. J. Appl. Phys., 103 (2008) 054505, https://doi.org/10.1063/1.2875776

K. Wong, W. Chim, and J. Yan. Physical mechanism of oxide interfacial traps, carrier mobility degradation and series resistance on contrast reversal in scanning-capacitance-microscopy dopant concentration extraction. Appl. Phys. Lett., 87 (2005) 053504, https://doi.org/10.1063/1.2006979

K. Wong, and W. Chim. Deep-depletion physics-based analytical model for scanning capacitance microscopy carrier profile extraction. Appl. Phys. Lett., 91 (2007) 013510, https://doi.org/10.1063/1.2753827

M. Johnscher et al., Rare-earth solid-state NMR spectroscopy of intermetallic compounds: The case of the 175Lu isotope. Solid State Commun, 52 (2016) 57, https://doi.org/10.1016/j.ssnmr.2019.05.003

S. Seidel, R.D. Hoffmann, R. Poettgen, and Z. Anorg, LaRh3Ga2 - Structure Determination from a Trilling. Allg. Chem., 641 (2015) 1400, https://doi.org/10.1002/zaac.201500059

S. Seidel et al., Ternary rhombohedral Laves phases RE2RH3Ga (RE = Y, La-Nd, Sm, Gd-Er). Z. Naturforsch. B, 72 (2017) 289, https://doi.org/10.1515/znb-2016-0265

L. Heletta, S. Seidel, C. Benndorf, H. Eckert, and R. Poettgen, Gallium-containing Heusler phases ScRh2Ga, ScPd2Ga, TmRh2Ga and LuRh2Ga-magnetic and solid state NMRspectroscopic characterization. Z. Naturforsch. B, 72 (2017) 609, https://doi.org/10.1515/znb-2017-0084

C. Shekhar, S. Ouardi, A.K. Nayak, G.H. Fecher, W. Schnelle, and C. Felser, Ultrahigh mobility and nonsaturating magnetoresistance in Heusler topological insulators. Phys. Rev. B, 86 (2012) 155314, https://doi.org/10.1103/PhysRevB.86.155314

M. J. Winiarski, and K. Bilinska. High thermoelectric power factors of p-type half-Heusler alloys YNiSb, LuNiSb, YPdSb, and LuPdSb. Intermetallic, 108 (2019) 55, https://doi.org/10.1016/j.intermet.2019.02.009

A. Iyigor, M. Ozduran, M. Unsal, O. Ornek, and N. Arıkan, Ab-initio study of the structural, electronic, elastic and vibrational properties of HfX (X = Rh, Ru and Tc). Philos. Mag. Lett., 97 (2017) 110, https://doi.org/10.1080/09500839.2017.1290292

P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey, Fullpotential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun., 59 (1990) 399, https://doi.org/10.1016/0010-4655(90)90187-6

P. Hohenberg, and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev., 136 (1964) B864, https://doi.org/10.1103/PhysRev.136.B864

K. Schwarz, P. Blaha, and G. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun., 147 (2002) 71, https://doi.org/10.1016/S0010-4655(02)00206-0

M. Blanco, E. Francisco, and V. Luana, GIBBS: isothermalisobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun., 158 (2004) 57, https://doi.org/10.1016/j.comphy.2003.12.001

Z. Wen, Y. Zhao, H. Hou, B. Wang, and P. Han, The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: A first-principles study. Mater. Des., 114 (2017) 398, https://doi.org/10.1016/j.matdes.2016.11.005

D. Rai, A. Shankar, M. Ghimire, and R. Thapa, Electronic and magnetic properties of a full-Heusler alloy Co2CrGe: a firstprinciples study. J. Theor. Appl. Phys, 7 (2013) 3, https://doi.org/10.1186/2251-7235-7-3

T. Song, X.W. Sun, J.H. Tian, X.P. Wei, G.X. Wan, and Q. Ma, The effect of pressure on the structural, electronic, magnetic, and thermodynamic properties of the Mn2RuGe inverse Heusler alloy. J. Magn. Magn. Mater, 428 (2017) 287, https://doi.org/10.1016/j.jmmm.2016.12.076

A. Bentouaf, F.H. Hassan, A.H. Reshak, and B. Aıssa, FirstPrinciples Study on the Structural, Electronic, Magnetic and Thermodynamic Properties of Full Heusler Alloys Co2VZ (Z = Al, Ga). J. Magn. Magn. Mater, 46 (2017) 130, https://doi.org/10.1007/s11664-016-4859-9

L. Hao, R. Khenata, X. Wang, and T. Yang, Ab Initio Study of the Structural, Electronic, Magnetic, Mechanical and Thermodynamic Properties of Full-Heusler Mn2CoGa. J. Electron. Mater., 48 (2019) 6222, https://doi.org/10.1007/s11664-019-07417-x

X. Wang, Z. Cheng, and G. Liu, Largest Magnetic Moments in the Half-Heusler Alloys XCrZ (X = Li, K, Rb, Cs; Z = S, Se, Te): A First-Principles Study. Materials, 10 (2017) 1078, https://doi.org/10.3390/ma10091078

J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77 (1996) 3865, https://doi.org/10.1103/ PhysRevLett.77.3865

V.I. Anisimov, J. Zaanen, and O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B, 44 (1991) 943, https://doi.org/10.1103/PhysRevB.44.943

H.J. Monkhorst, and J.D. Pack, Special points for Brillouinzone integrations. Phys. Rev. B, 13 (1976) 5188, https://doi.org/10.1103/PhysRevB.13.5188

F.D. Murnaghan, The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA, 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.24

P. Vinet, J.H. Rose, J. Ferrante, and J.R. Smith, Universal features of the equation of state of solids. J. Phys. Condens. Matter, 1 (1989) 1941, https://doi.org/10.1088/0953-8984/1/11/002

M. Born, and K. Huang, Dynamical theory of crystal lattices, Clarendon press, 1954, https://doi.org/10.1107/S0365110X56002370

M. Born, On the stability of crystal lattices. J. Chem. Phys, 7 (1939) 591, https://doi.org/10.1017/S0305004100017138

H.B. Pedersen, and J.L. Knudsen, Direct determination of the non-linear connection between tension and transverse amplitude for a vibrating string. Eur. J. Phys., 38 (2017) 045003, https://doi.org/10.1088/1361-6404/aa68fc

Z.E. Wu Z. J. H. Xiang, X. Hao, X. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B, 76 (2007) 054115, https://doi.org/10.1103/PhysRevB.76.054115

F. Peng, L. Han, H. Fu, and X. Cheng, First-principles calculations on elasticity and the thermodynamic properties of TaC under pressure. Phys. Status Solidi B, 246 (2009) 1590, https://doi.org/10.1002/pssb.200945014

R. Majumder, and M.M. Hossain, First-principles study of structural, electronic, elastic, thermodynamic and optical properties of topological superconductor LuPtBi. Comput. Condens. Matter, 21 (2019) e00402, https://doi.org/10.1016/j.cocom.2019.e00402

C. Liu, J. Yu, B. Zhang, and X. Zhang, Elastic wave attenuation in a functionally graded viscoelastic couple stress plate, sandwiched between two elastic half-spaces. Appl. Math. Model, 75 (2019) 52, https://doi.org/10.1016/j.apm.2022.04.013

S. Ahmad, M. Shafiq, R. Ahmad, S. Jalali-Asadabadi, and I. Ahmad, Strongly correlated intermetallic rare-earth monoaurides (Ln-Au): Ab-initio study. J. Rare Earths, 36 (2018) 1106, https://doi.org/10.1016/j.jre.2018.03.018

C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic. Phys. Rev, 82 (1951) 403, https://doi.org/10.1103/PhysRev.82.403

V. Kanchana, G. Vaitheeswaran, Y. Ma, Y. Xie, A. Svane, and O. Eriksson, Density functional study of elastic and vibrational properties of the Heusler-type alloys Fe2VAl and Fe2VGa. Phys. Rev. B, 80 (2009) 125108, https://doi.org/10. 1103/PhysRevB.80.125108

X. Wang, Z. Cheng, J. Wang, and G. Liu, A full spectrum of spintronic properties demonstrated by a C1b-type Heusler compound Mn2Sn subjected to strain engineering. J. Mater. Chem. C, 4 (2016) 8535, https://doi.org/10.1039/C6TC02526A

P. Mott, J. Dorgan, and C. Roland, The bulk modulus and Poisson’s ratio of “incompressible” materials. J. Sound Vib., 312 (2008) 572, https://doi.org/10.1016/j.jsv.2008.01.026

R. Soulen et al., Measuring the Spin Polarization of a Metal with a Superconducting Point Contact. Science, 282 (1998) 85, 10.1126/science.282.5386.85

K. Ozdogan, E. Sasıoglu, and I. Galanakis, Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin-gapless and magnetic semiconductors. J. Appl. Phys, 113 (2013) 193903, https://doi.org/10.1063/1.4805063

R.G. Pearson, Maximum Chemical and Physical Hardness. J. Chem. Educ., 76 (1999) 267, https://doi.org/10.1021/ed076p267

P. Debye. Rationalizing phonon dispersion for lattice thermal conductivity of solids. Ann. Phys., 344 (1912) 789, https://doi.org/10.1093/nsr/nwy097

M. Florez, J. Recio, E. Francisco, M. Blanco, and A.M. Pendas. First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides. Phys. Rev. B, 66 (2002) 144112, https://doi.org/10.1103/PhysRevB.66.144112

A. Petit, and Dulong, Can quantum-mechanical description of physical reality be considered complete?. Ann. Chim. Phys., 10 (1819) 395, https://doi.org/10.1103/PhysRev.47.777

Downloads

Published

2023-01-03

How to Cite

[1]
S. Benatmane, M. Affane, Y. Bouali, B. Bouadjemi, S. Cherid, and W. Benstaali, “Phase stability, mechanical, electronic, magnetic and thermodynamic properties of the Pd2PrX(X=Cl, F) compounds: An Ab-initio study”, Rev. Mex. Fís., vol. 69, no. 1 Jan-Feb, pp. 011003 1–, Jan. 2023.