Bright optical spatial solitons in a photovoltaic photorefractive waveguide exhibiting the two photon photorefractive effect

Authors

  • Aavishkar Katti MIT World Peace University

DOI:

https://doi.org/10.31349/RevMexFis.69.021301

Keywords:

Photorefractive materials, two photon photorefractive effect, optical spatial solitons, photorefractive waveguides

Abstract

We investigate for the first time, photorefractive solitons in a two photon photorefractive waveguide which also exhibits the bulk photovoltaic effect. The dynamical evolution equation of such solitons has been obtained under the paraxial ray approximation along with the Wentzel-Kramers-Brilluoin Jefferys (WKBJ) approximation. The existence curve for the solitons is derived and four distinct regions of power have been identified in the absence of waveguiding depending upon the threshold power for self trapping. Bistable states have been observed to be present. We have studied the effect of the planar waveguide and found that it enhances the self trapping nonlinearity and hence results in a reduction of the threshold power required for formation of the soliton. The propagation of the light beam is studied for various different strengths of the waveguide. A beam which would not have normally been self trapped can now become a soliton by virtue of the planar waveguide structure. Finally, we investigate the linear stability of these solitons by both, the Lyapunov method and numerical simulations.

References

D. N. Christodoulides and M. I. Carvalho, Bright, dark, and gray spatial soliton states in photorefractive media J. Opt. Soc. Am. B 12 (1995) 1628 https://dx.doi.org/10.1364/JOSAB.12.001628.

M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, Steady-state spatial screening solitons in photorefractive materials with external applied field Phys. Rev. Lett. 73 (1994) 3211. https://doi.org/10.1103/PhysRevLett.73.3211.

Z. Chen, M. H. Garrett, G. C. Valley, M. Mitchell, M. Shih, and M. Segev, Steady-state dark photorefractive screening solitons Opt. Lett. 21 (1996) 629, https://dx.doi.org/10.1364/OL.21.000629.

K. Kos, H. Meng, G. Salamo, M. M. Shih, M. Segev, and G. C. Valley, One-dimensional steady-state photorefractive screening solitons, Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top. 53 (1996) R4330 https://dx.doi.org/10.1103/PhysRevE.53.R4330.

M. Segev, B. Crosignani, A. Yariv, Self-trapping of optical beams in photorefractive media, Front. Nonlinear Opt. Sergei Akhmanov Memorial Volume, (CRC Press, Boca Raton, 2021) pp. 136.

Q. Jiang, Y. Su, Z. Ma, and J. Chen, Coherent interactions of multi-Airy-Gaussian beams in photorefractive media J. Opt., 49 (2020) 224. https://doi.org/10.1007/s12596-020-00610-w.

Q.-S. Liu, Z.-X. Zhang, H. Cui, Z.-C. Luo, W.-C. Xu, and A.-P. Luo, Generation and manipulation of spiral beams in photovoltaic photorefractive crystal twinning with mirroring diffusion management Opt. Commun., 478 (2021) 126331 https://doi.org/10.1016/j.optcom.2020.126331.

A. Katti, Coupling of separate solitons in a series circuit of two photon photorefractive crystals exhibiting simultaneous quadratic and linear nonlinearities Optik, 206 (2020) 164212 https://doi.org/10.1016/j.ijleo.2020.164212.

G. Di Domenico, Introduction to Nonlinear Optics in Photorefractive Media, Electro-optic Photonic Circuits, (Springer ,Switzerland, 2019) pp. 1-17. https://doi.org/10.1007/978-3-030-23189-7 1.

Q. Jiang, Y. Su, H. Nie, Z. Ma, and Y. Li, Propagation and interaction of finite-energy Airy-Hermite-Gaussian beams in photorefractive media Appl. Phys. B, 124 (2018) 1. https://doi.org/10.1007/s00340-018-6906-0.

X. Zhang, G. Zhang, and H. Zhou, The evolution and deflection characteristics of Gaussian beam in photovoltaic photorefractive crystal circuit with dark soliton intensity effect Optik, 160 (2018) 182. https://doi.org/10.1016/j.ijleo.2018.01.097.

B. P. Akhouri and P. K. Gupta, Waveguiding effect on optical spatial solitons in centrosymmetric photorefractive materials J. Opt., 46 (2017) 281 https://dx.doi.org/10.1007/s12596-016-0372-z.

L. Hao, C. Hou, Q. Wang, and H. Mu, Coherently coupled spatial soliton pairs in biased photorefractive crystals with both the linear and quadratic electro-optic effects Optik, 127

(2016) 4339. https://doi.org/10.1016/j.ijleo.2016.01.143.

T. Zhao, T. Bo, J. Yan, W. Pan, and L. Min, Dynamics of the Manakov solitons in biased guest-host photorefractive polymer Commun. Theor. Phys. 60 (2013) 150 https://doi.org/10.1088/0253-6102/60/2/02.

X. Ji, Q. Jiang, and J. Liu, Separate spatial holographic and two-photon-Hamiltonian soliton pairs in an unbiased series photorefractive crystal circuit Optik, 123 (2012) 1223 https://dx.doi.org/10.1016/j.ijleo.2011.07.055.

L. Keqing, T. Tiantong, and Z. Yanpeng, One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field Phys. Rev. A, 61 (2000) 053822 https://dx.doi.org/10.1103/PhysRevA.61.053822.

L. Keqing, Z. Yanpeng, T. Tiantong, and L. Bo, Incoherently coupled steady-state soliton pairs in biased photorefractive-photovoltaic materials Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 64 (2001) 056603 https://dx.doi.org/10.1103/PhysRevE.64.056603.

C. F. Hou and L. Wang, Manakov solitons in biased photorefractive polymer Optik 115 (2004) 405 https://dx.doi.org/10.1078/0030-4026-00389.

A. Katti, Bright pyroelectric quasi-solitons in a photorefractive waveguide Optik, 156 (2018) 433, https://dx.doi.org/10.1016/j.ijleo.2017.10.105.

J. Safioui, F. Devaux, and M. Chauvet, Pyroliton: pyroelectric spatial soliton. Opt. Express, 17 (2009) 22209 https://dx.doi.org/10.1364/OE.17.022209.

J. S. Liu and K. Q. Lu, Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-deflection J. Opt. Soc. Am. B-Opt. Phys., 16 (1999) 550 https://doi.org/10.1364/JOSAB.16.000550.

C. Hou, Y. Pei, Z. Zhou, and X. Sun, Spatial solitons in two-photon photorefractive media Phys. Rev. A, 71 (2015) 053817 https://doi.org/10.1103/PhysRevA.71.053817.

M. Segev and A. J. Agranat, Spatial solitons in centrosymmetric photorefractive media Opt. Lett. 22 (1997) pp. 1299 https://dx.doi.org/10.1364/OL.22.001299.

C. Hou, Y. Zhang, Y. Jiang, and Y. Pei, Photovoltaic solitons in two-photon photorefractive materials under open-circuit conditions Opt. Commun. 273 (2007) 544 https://dx.doi.org/10.1016/j.optcom.2007.01.024.

B. Hanna et al., Spatial solitons in photorefractive lattices Optoelectron. Rev. 13 (2005) 85.

B. Kumari, P. M. Z. Hasan, R. Darwesh, P. A. Alvi, and A. Katti, Separate coupled solitons in biased series photorefractive semiconductor circuit Laser Phys. 31 (2021) 085401 https://doi.org/10.1088/1555-6611/ac089c.

M. Segev, Optical spatial solitons Opt. Quantum Electron.30 (1998) 503. https://doi.org/10.1023/A:1006915021865.

Z. Chen, M. Segev, and D. N. Christodoulides, Optical spatial solitons: historical overview and recent advances Rep. Prog. Phys. 75 (2012) 086401 https://dx.doi.org/10.1088/0034-4885/75/8/086401.

S. Trillo and W. E. Torruellas, Eds., Spatial Solitons, Springer Series in Optical Sciences, vol. 31. (Springer, Berlin, 2001.)

G. I. Stegeman, Optical Spatial Solitons and Their Interactions: Universality and Diversity Science, 286 (1999) 1518 https://dx.doi.org/10.1126/science.286.5444.1518.

D. D. Nolte, Photorefractive Effects and Materials. (Springer Science & Business Media, New York, 2013).

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, Spatial solitons in photorefractive media Phys. Rev. Lett., 68 (1992) 923, https://dx.doi.org/10.1103/PhysRevLett.68.923.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, Dark and bright photovoltaic spatial solitons Phys. Rev. A, 50 (1994) R4457 https://dx.doi.org/10.1103/PhysRevA.50.R4457.

M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, Photovoltaic spatial solitons J. Opt. Soc. Am. B, 14 (1997) 1772 https://dx.doi.org/10.1364/JOSAB.14.001772.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, Observation of dark photovoltaic spatial solitons Phys. Rev. A, 52 (1995) 3095 https://doi.org/10.1103/PhysRevA.52.3095.

E. Fazio et al., Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides Appl. Phys. Lett.85 (2004) 2193, https://doi.org/10.1063/1.1794854.

A. Katti and R. A. Yadav, Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect Phys. Lett. Sect. Gen. At. Solid State Phys. 381 (2017) 166 https://doi.org/10.1016/j.physleta.2016.10.054.

L. Hao, Q. Wang, and C. Hou, Spatial solitons in biased photorefractive materials with both the linear and quadratic electro-optic effects J. Mod. Opt., 61 (2014) 1236, https://dx.doi.org/10.1080/09500340.2014.928379.

M. F. Shih and F. W. Sheu, Photorefractive polymeric optical spatial solitons. Opt. Lett., 24 (1999) 1853 https://dx.doi.org/10.1364/OL.24.001853.

F.-W. Sheu and M.-F. Shih, Photorefractive polymeric solitons supported by orientationally enhanced birefringent and electro-optic effects J. Opt. Soc. Am. B, 18 (2001) 785 https://dx.doi.org/10.1364/JOSAB.18.000785.

E. Castro-Camus and L. F. Magana, Prediction of the physical response for the two-photon photorefractive effect Opt. Lett. 28 (2003) 1129. https://doi.org/10.1364/OL.28.001129.

L. Hao, C. Hou, and Q. Wang, Spatial solitons in biased two-photon photorefractive crystals with both the linear and quadratic electro-optic effect Opt. Laser Technol. 56 (2014) 326 https://dx.doi.org/10.1016/j.optlastec.2013.09.013.

G. Zhang and J. Liu, Screening-photovoltaic spatial solitons in biased two-photon photovoltaic photorefractive crystals J. Opt. Soc. Am. B, 26 (2009) 113 https://doi.org/10.1364/JOSAB.26.000113.

K. Zhan, C. Hou, H. Tian, S. Pu, and Y. Du, Spatial solitons in centrosymmetric photorefractive crystals due to the two-photon photorefractive effect J. Opt. 12 (2010) 015203 https://doi.org/10.1088/2040-8978/12/1/015203.

A. Katti, R. A. Yadav, and A. Prasad, Bright optical spatial solitons in photorefractive waveguides having both the linear and quadratic electro-optic effect Wave Motion, 77 (2018) 64 https://doi.org/10.1016/J.WAVEMOTI.2017.10.002.

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Self-Focusing and Difraction of Light Beams in a Nonlinear Medium Sov. Phys. Uspekhi, 10 (1968) 609 https://doi.org/10.1070/PU1968v010n05ABEH005849.

D. Anderson, Variational approach to nonlinear pulse propagation in optical fibers Phys. Rev. A, 27 (1983) 3135 https://doi.org/10.1103/PhysRevA.27.3135.

S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, Averaged description of wave beams in linear and nonlinear media (the method of moments) Radiophys. Quantum Electron., 14 (1974) 1062 https://doi.org/10.1007/BF01029467.

B. Malomed, D. Anderson, M. Lisak, M. L. Quiroga-Teixeiro, and L. Stenflo, Dynamics of solitary waves in the Zakharov model equations Phys. Rev. E, 55 (1997) 962. https://doi.org/10.1103/PhysRevE.55.962.

V. Skarka, V. I. Berezhiani, and R. Miklaszewski, Spatiotemporal soliton propagation in saturating nonlinear optical media Phys. Rev. E - Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., 56 (1997) 1080 https://doi.org/10.1103/PhysRevE.56.1080.

V. Skarka and N. B. Aleksic, ́ Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations Phys. Rev. Lett. 96 (2006) 013903. https://doi.org/10.1103/PhysRevLett.96.013903.

Z. Liu, W. Zang, J. Tian, W. Zhou, C. Zhang, and G. Zhang, Analysis of Z-scan of thick media with high-order nonlinearity by variational approach Opt. Commun. 219 (2003) 411 https://doi.org/10.1016/S0030-4018(03)01298-7.

Y. Huang, Q. Guo, and J. Cao, Optical beams in lossy nonlocal Kerr media Opt. Commun. 261 (2006) 175. https://doi.org/10.1016/j.optcom.2005.12.003.

S. Jana and S. Konar, A new family of Thirring type optical spatial solitons via electromagnetically induced transparency Phys. Lett. A 362 (2007) 435. https://doi.org/10.1016/j.physleta.2006.10.043.

P. T. Dinda, A. B. Moubissi, and K. Nakkeeran, A collective variable approach for dispersion-managed solitons J. Phys. Math. Gen. 34 (2001) L103. https://doi.org/10.1088/0305-4470/34/10/104.

J. Santhanam, C. J. McKinstrie, T. I. Lakoba, and G. P. Agrawal, Effects of precompensation and postcompensation on timing jitter in dispersion-managed systems Opt. Lett., 26(2001) 1131. https://doi.org/10.1364/OL.26.001131.

J. H. B. Nijhof, W. Forysiak, and N. J. Doran, The Averaging Method for Finding Exactly Periodic dispersion-managed solitons IEEE J. Sel. Top. Quantum Electron. 6 (2000) 330. https://doi.org/10.1109/2944.847768.

J. N. Kutz, S. D. Koehler, L. Leng, and K. Bergman, Analytic study of orthogonally polarized solitons interacting in highly birefringent optical fibers J. Opt. Soc. Am. B-Opt. Phys. 14 (1997) 636. https://doi.org/10.1364/JOSAB.14.000636.

B. Liu, L. Liu, and L. Xu, Characteristics of recording and thermal fixing in lithium niobate Appl. Opt. 37 (1998) 2170. https://doi.org/10.1364/AO.37.002170.

I. Prigogine, G. Nicolis, Self-Organisation in Nonequilibrium Systems: Towards A Dynamics of Complexity. In: Hazewinkel, M., Jurkovich, R., Paelinck, J.H.P. (eds) Bifurcation Analysis. (Springer, Dordrecht, 1985) .

Downloads

Published

2023-03-01

How to Cite

[1]
A. Katti, “Bright optical spatial solitons in a photovoltaic photorefractive waveguide exhibiting the two photon photorefractive effect”, Rev. Mex. Fís., vol. 69, no. 2 Mar-Apr, pp. 021301 1–, Mar. 2023.