Optical gain and threshold current density of strained wurtzite GaN/AlGaN quantum dot lasers


  • H. Bouchenafa Hassiba Ben Bouali University
  • B. Benichou Hassiba Benbouali University of Chlef




quantum dot lasers; optical gain; III-N semiconductors; biaxial strain; threshold current density.


In this work, the influences of biaxial compressive and tensile strains on optical gain and threshold current density are investigated theoretically as a function of the side lengths of the quantum box in the GaN/Al0.2Ga0.8N structure by using a model based on the density matrix theory of semiconductor lasers with relaxation broadening. For various side lengths of the quantum box, we compare the spectra gain curves of compressive, tensile-strained, and unstrained structures of the GaN/Al0.2Ga0.8N cubic quantum-dot (QD) laser. The dependence of peak optical gain on carrier density and the modal gain on current density is plotted too for all cases. The results reveal that many enhancements can be made to the laser structure by introducing -0.5% compressive strain: a higher value of optical gain of 18421 cm-1  at  L=60A, a lower value of transparency of carrier density of Ntr=0.13*10¨¨19 cm-3and transparency current density of Jtr=26.9 A/cm  and a lower threshold current density of Jth= 78.87 A/cm2  at L=100 A.


D. Bimberg, M. Grundmann and N.N. Ledentsov, Quantum dot Heterostructures, (Wiley: New York, USA 1999).

M. Asada, Y. Miyamoto and Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers, IEEE J. Quantum Electron. 22 (1986) 1915, https://doi.org/10.1109/JQE.1986.1073149.

Y. Arakawa and H. Sasaki, Multidimensional quantum well laser and temperature dependence of its threshold current, App. Phys. Lett. 40 (1982) 939, https://doi.org/10.1063/1.92959.

K. Vahala, Quantum box fabrication tolerance and size limits in semiconductor and their effect on optical gain, IEEE J. Quantum Electron. 24 (1988) 523, https://doi.org/10.1109/3.157.

Q. Yan, P. Rinke, M. Scheffler and C.G. Van de Walle, Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN, App. Phys. Lett. 95 (2009) 121111, https://doi.org/10.1063/1.3236533.

M. Miyamura, K. Tachibana and Y. Arakawa, UV photoluminescence from size-controlled GaN quantum dots grown by MOCVD, Phys. Stat. Sol. (a) 192 (2002) 33, https://doi.org/10.1002/1521-396X(200207)192:13.0.CO;2-C.

K.H. Al-Mossawi, ZnSe/ZnS quantum-dot semiconductor optical amplifiers, Opt Photonics J. 1 (2011) 65, https://doi.org/10.4236/opj.2011.12010.

S. Nakamura, InGaN/GaN/AlGaN-Based laser diodes with modulation-doped strained-layer superlattices, Jpn. J. Appl. Phys. 36 (1997) L1568, https://doi.org/10.1143/JJAP.36.L1568.

H. Bouchenafa, B. Benichou, and B. Bouabdallah, Performance characteristics of GaN/Al0.2Ga0.8N quantum dot laser at L = 100 A, Rev. Mex. Fis. 65 (2019) 38.

E.O. Chukwuocha and M.C. Onyeaju, Effect of Quantum Confinement on The wavelength of CdSe, ZnS and GaAs quantum dots (Qds), Int. J. Scientific. Technol. Res. 1 (2012) 21-24.

P. Harrison, Quantum Wells, Wires and Dots, 2nd ed. (John Wiley and Sons 2005), pp. 243-270.

H. Bouchenafa, B. Bouabdallah and B. Benichou, Promising features of In0.5Ga0.5N/Al0.2Ga0.8N quantum dot lasers, Turk. J. Phys. 41 (2017) 143, https://doi.org/10.3906./fiz-1610-28.

M. Sugawara: Self Assembled InGaAs/GaAs Quantum dots, 1st ed. (Academic Press), (1999) pp. 246-247.

D.G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen and S. Freinsem, Quantum dot laser diode with low threshold and low internal loss, Electron. Lett. 45 (2009) 54, https://doi.org/10.1049/el:20092873.

M. Toshihko, Analytical formulas for the optical gain of quantum wells, IEEE J. Quantum Electron. 32 (1996) 493, https://doi.org/10.1109/3.485401.

J. Minch, S.H. Park, T. Keating and S.L. Chuang, Theory and experiment of In1−xGaxAsyP1−y and In1−x−yGaxAlyAs long-wavelength strained quantum well lasers, IEEE J. Quantum Electron. 35 (1999) 1, https://doi.org/10.1109/3.760325.

S.L. Chuang and Senior Member, Optical gain of strained wurtzite GaN quantum well lasers, IEEE J. Quantum Electron. 32 (1996) 1791, https://doi.org/10.1109/3.538786.

D. Ahn and S-H. Park, On the theory of optical gain of strainedlayer hexagonal and cubic GaN quantum-well lasers, Jpn. J. App. Phys. 35 (1996) 6079-6083.

H. Zhao, R.A. Arif, Y.K. Ee and N. Tansu, Optical gain analysis of strain-compensated InGaN-AlGaN quantum well active regions for lasers emitting at 420-500 nm, Opt Quant Electron 40 (2008) 301, https://doi.org/10.1007/s11082-007-9177-2.

H. El Ghazi, A. Jorio and I. Zokrani, Recombinaison energy in (In,Ga)N/GaN strained quantum well, Afr. Rev. Phys. 7 (2012) 237.

C. Himwas: III Nitride nanostructures for UV emitter, University of Grenoble Alpes, (2015).

V.B. Yekta and H. Kaatuzian, Simulation and temperature characteristics improvement of 1.3 µm AlGaInAs multiple quantum well laser, Int. J. Opt. and Applications. 4 (2014) 46, https://doi.org/10.5923/j.optics.20140402.04.

S. Park, W. Jeong, H. Kim and B. Choe, Optimization of threshold current density for compressive strained InGaAs/GaAs quantum well lasers, Jpn. J. App. Phys. 32 (1993) 5584, https://doi.org/10.1143/JJAP.32.5584.

G.L. Su, T. Frost, P. Bhattacharya, J.M. Dallesasse, and S.L. Chuang, Detailed model for the In0.18Ga0.82N/GaN selfassembled quantum dot active material for λ = 420 nm emission, Optics express. 22 (2014) 22716, https://doi.org/10.1364/OE.22.022716.

M. Sharma, R. Yadav, P. Lal, F. Rahman and P.A. Alvi, Modal gain characteristics of step SCH InGaP/GaAs MQW based nanoscale heterostructures, Advances in Microelectronic Engineering (AIME) 2 (2014) 27.

T.Z. Al Tayyar and J.M. Sahan, Design and analysis of quantum dot laser diode for communication applications, IJORT. 3 (2014) 94-100.




How to Cite

H. Bouchenafa and B. Benichou, “Optical gain and threshold current density of strained wurtzite GaN/AlGaN quantum dot lasers”, Rev. Mex. Fís., vol. 69, no. 1 Jan-Feb, pp. 010503 1–, Jan. 2023.