Elastic scattering of 7Li+58Ni: a phenomenological and microscopic analysis
DOI:
https://doi.org/10.31349/RevMexFis.69.021201Keywords:
Elastic scattering; optical potential; folding potential; cluster folding model; Sao Paulo potential; CDCC methodAbstract
Motivating by examining the break-up effect of 7Li projectile into t + α cluster structure in the field of 58Ni nucleus, the available experimental angular distributions for 7Li + 58Ni elastic scattering system at energies ranging from 13 and up to 42 MeV are studied utilizing different phenomenological as well as microscopic potentials. Data analysis utilizing the Sao Paulo potential revealed that in order to reproduce the data, the strength of the real folded potential had to be reduced by ~ 36 %. While, data analysis utilizing the double folding CDM3Y6 potential with and without the rearrangement term revealed that the potential strength needed to be reduced by ~ 63 and 62 %, respectively. Cluster folding model based on the t + α cluster structure for 7Li is applied to reproduce the considered data. Similar results were obtained showing the necessity to reduce real cluster folding potential strength by about 49 %. The reported reduction in potential strength from the different implemented potentials supports the strong 7Li break-up impact. Finally, the full microscopic continuum discretized coupled channels approach is applied with a great success in reproducing the considered data.
References
P. Amador-Valenzuela, E. F. Aguilera, E. Martinez-Quiroz, D. Lizcano and J. C. Morales-Rivera, Measurements of angular distributions for 7Li elastically scattered from58Ni at energies around the Coulomb barrier J. of Phys.: Conf. Series 876 (2017) 012002, https://doi.org/10.1088/1742-6596/876/1/012002
K. O. Pfeiffer, E. Speth and K. Bethge, Break-up of 6Li and 7Li on tin and nickel nuclei, Nucl. Phys. A 206 (1973) 545, https://doi.org/10.1016/0375-9474(73)90084-5
T. P. Morrison et al., Coulomb-nuclear interference in the (7Li, 7Li’) reactions, J. of Phys. G 5 (1979) 1751, https://doi.org/10.1088/0305-4616/5/12/014
D. W. Glover, R. I. Cutler and K. W. Kemper, Double folding model analysis of 7Li scattering, Nucl. Phys. A 341 (1980) 137, https://doi.org/10.1016/0375-9474(80)90366-8
D. Gupta et al., Breakup of 42 MeV 7Li projectiles in the fields of 12C and 197Au nuclei Nucl. Phys. A 646 (1999) 161, https://doi.org/10.1007/s12043-001-0177-7
K. Zerva et al., Quasi-elastic backscattering of 6,7Li on light, medium and heavy targets at near- and sub-barrier energies, Eur. Phys. J. A 48 (2012) 102, https://doi.org/10.1140/epja/i2012-12102-x
Wen-Di Chenet et al., Microscopic study of 7Li-nucleus potential, Chinese. Phys. C 44 (2020) 054109, https://link.aps.org/doi/10.1088/1674-1137/44/5/054109
Jin Lei, Inclusive breakup calculations in angular momentum basis: Application to 7Li + 58Ni Phys. Rev. C 97 (2018) 034628, https://link.aps.org/doi/10.1103/PhysRevC.97.034628
A. K. Basak et al., Non-monotonic potentials and vector analyzing powers of 6,7Li scattering by 12C, 26Mg, 58Ni, and 120Sn, EPL 94 (2011) 62002, https://doi.org/10.1209/0295-5075/94/62002
M. El-Azab Farid and M.A. Hassanain, Folding model and coupled-channels analysis of 6,7Li elastic and inelastic scattering, Eur. Phys. J. A. 19 (2004) 231, https://doi.org/10.1140/epja/i2003-10122-3
Y. Sakuragi, M. Yahiro, M. Kamimura and M. Tanifuji, Roles of folding spin-orbit potentials in 6,7Li scattering, Nucl. Phys. A 462 (1987) 173, https://doi.org/10.1016/0370-2693(86)90696-9
J. Gomez-Camacho M. Lozano and M.A. Nagarajan, Coupled channel effects in the scattering of 6,7Li BY 58Ni Phys. Lett. B 161 (1985) 39, https://doi.org/10.1016/0370-2693(85)90604-5
H. Nishioka, J. A. Tostevin, R. C. Johnson and K. -I. Kubo, Projectile excitation and structure effects in 6Li and 7Li scattering Nucl. Phys. A 415 (1984) 230, https://doi.org/10.1016/0375-9474(84)90622-5
Sh. Hamada and Awad A. Ibraheem, Peculiarities of 6Li+12C elastic scattering, Int. J. Mod. Phys. E 28 (2019) 1950108, https://doi.org/10.1142/S0218301319501088
Sh. Hamada et al., Analysis of 6Li+16O elastic scattering using different potentials, Rev. Mex. Fis. 66 (2020) 322 https://doi.org/10.31349/RevMexFis.66.322
Sh. Hamada and Awad A. Ibraheem, Cluster folding optical potential analysis for 6Li+28Si elastic scattering, Rev. Mex. Fis. 67 (2021) 276 https://doi.org/10.31349/RevMexFis.67.276
Sh. Hamada, Norah A. M. Alsaif and Awad A. Ibraheem, Detailed analysis for 6Li+40Ca elastic scattering using different potentials, Phys. Scr. 96 (2021) 055306, https://doi.org/10.1088/1402-4896/abeba6
Awad A. Ibraheem et al., Elastic and Inelastic Scattering of 9,10,11Be by 64Zn and 120Sn Nuclei at Different Energies, Braz. J. Phys. 51 (2021) 753, https://doi.org/10.1007/s13538-020-00839-7
Awad A. Ibraheem, N. A. M. Alsaif, M. Al-Ahmari and Sh. Hamada, Further investigation of 10,11B + 58Ni elastic scattering, Phys. Scr. 96 (2021) 115307 https://doi.org/10.1088/1402-4896/ac183f
L. J. Allen, J.P. McTavish, M.W. Kermode and A. McKerrell, The root-mean-square radius of the deuteron, J. Phys. G 7 (1981) 1367, https://doi.org/10.1088/0305-4616/7/10/014
G. R. Satchler and W. G. Love, Folding model potentials from realistic interactions for heavy-ion scattering, phys. Rep. 55 (1979) 183, https://doi.org/10.1016/0370-1573(79)90081-4
L. C. Chamon et al., Nonlocal Description of the Nucleus-Nucleus Interaction, Phys. Rev. Lett. 79 (1997) 5218, https://link.aps.org/doi/10.1103/PhysRevLett.79.5218
L. C.Chamon, D. Pereira, M. S. Hussein, Parameterfree account of quasielastic scattering of stable and radioactive nuclei, Phys. Rev. C 58 (1998) 576, https://link.aps.org/doi/10.1103/PhysRevC.58.576
L.C. Chamon, The Sao Paulo Potential Nucl. Phys. A 787 (2007) 198. https://doi.org/10.1016/j.nuclphysa.2006.12.032
B. V. Carlson and D. Hirata, Dirac-Hartree-Bogoliubov approximation for finite nuclei, Phys. Rev. C 62 (2000) 054310, https://link.aps.org/doi/10.1103/PhysRevC.62.054310
R. A. Hardekopf, R. F. Haglund, Jr., G. G. Ohlsen, W. J. Thompson, and L. R. Veeser,Polarized triton elastic scattering at 17 MeV, Phys. Rev. C 21 (1980) 906, https://link.aps.org/doi/10.1103/PhysRevC.21.906
W. Trombik, K. A. Eberhard, G. Hinderer, H. H. Rossner, A. Weidinger, and J. S. Eck, Back-angle elastic and inelastic scattering of α particles from the even Ni isotopes, Phys. Rev. C 9 (1974) 1813 https://link.aps.org/doi/10.1103/PhysRevC.9.1813
J. Cook, Global optical-model potentials for the elastic scattering of 6,7Li projectiles Nucl. Phys. A 388 (1982) 153 https://doi.org/10.1016/0375-9474(82)90513-9
M. Nassurlla et al., New measurements and analysis of elastic scattering of 13C by Be nuclei in a wide energy range, Eur. Phys. J. A 57 (2021) https://doi.org/10.1140/epja/s10050-021-00539-z
M. Nassurlla et al., New measurements and reanalysis of 14N elastic scattering on 10B target, Chinese Phys. C 44 (2020) 104103, https://doi.org/10.1088/1674-1137/abab89
N. Burtebayev et al., Effect of the Transfer Reactions for 16O+ 10B Elastic Scattering, Acta Phys. Pol. B 50 (2019) 1, https://doi.org/10.5506/APhysPolB.50.1423
Sh. Hamada and Awad A, Ibraheem, Optical model potentials for 16O + 16O elastic scattering, Indian J. Phys. 94 (2020) 87 https://doi.org/10.1007/s12648-019-01443-5
V. K. Lukyanov et al., Probing the exotic structure of 8B by its elastic scattering and breakup reaction on nuclear targets, Eur. Phys. J. A 53 (2017) 31, https://doi.org/10.1140/epja/i2017-12222-9
Sh. Hamada and Awad A. Ibraheem, Anomaly in weakly bound 7Li nucleus in the field of 208Pb target, Int. J. Mod. Phys. E 31 (2022) 2250019, https://doi.org/10.1142/S0218301322500197
I. J. Thompson, Coupled reaction channels calculations in nuclear physics, Comput. Phys. Rep. 7 (1988) 167, https://doi.org/10.1016/0167-7977(88)90005-6
L. C. Chamon, B. V.Carlson and L. R. Gasques, Sao Paulo potential version 2 (SPP2) and Brazilian nuclear potential (BNP), Comp. Phys. Comm. 267 (2021) 108061 https://doi.org/10.1016/j.cpc.2021.108061
Sh. Hamada and A. A. Ibraheem, Reanalysis of 6Li+90Zr angular distributions using different nuclear potentials, Journal of Taibah University for Science 16 (2022) 163, https://doi.org/10.1080/16583655.2022.2036428
I. I. Gontchar, M.V. Chushnyakova, A C-code for the double folding interaction potential of two spherical nuclei, Comput. Phys. Commun.181 (2010) 168. https://doi.org/10.1016/j.cpc.2009.09.007
Dao T. Khoa, G. R. Satchler, and W. von Oertzen Nuclear incompressibility and density dependent NN interactions in the folding model for nucleus-nucleus potentials, Phys. Rev. C 56 (1997) 954 https://doi.org/10.1103/PhysRevC.56.954
Dao T. Khoa Nguyen Hoang Phuc, Doan Thi Loan and Bui Minh Loc, Nuclear mean field and double-folding model of the nucleus-nucleus optical potential, Phys. Rev. C 94 (2016) 034612. https://link.aps.org/doi/10.1103/PhysRevC.94.034612
Yukinori Sakuragi, Masanobu Yahiro, Masayasu Kamimura, Microscopic Coupled-Channels Study of Scattering and Breakup of Light Heavy-Ions, Prog. Theor. Phys. Suppl. 89 (1986) 136, https://doi.org/10.1143/PTPS.89.136
C. Mahaux, H. Ngo, and G. R. Satchler, Causality and the threshold anomaly of the nucleus-nucleus potential, Nucl. Phys. A 449 (1986) 354, https://doi.org/10.1016/0375-9474(86)90009-6
K. Rusek, J. Gomez-Camacho, I. Martel-Bravo, G. Tungate, Study of polarized 7Li scattering from 208Pb at 33 MeV, Nucl. Phys. A 614 (1997) 112. https://doi.org/10.1016/S0375-9474(96)00449-6
N. Keeley and K. Rusek, Near-barrier polarisation potentials for 6,7Li + 208Pb, Phys. Lett. B 427 (1998) 1 https://doi.org/10.1016/S0370-2693(98)00334-7
N. Keeley, K. W. Kemper, O. Momotyuk and K. Rusek,6Li and 6He elastic scattering from 12 C and the effect of direct reaction couplings, Phys. Rev. C 77 (2008) 057601. https://link.aps.org/doi/10.1103/PhysRevC.77.057601
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Norah A.M. Alsaif, Sh. Hamada, M. El-Azab Farid, B. M. Alotaibi, Mohammed Alotiby, Awad Ibraheem
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.