Investigation using Monte-Carlo codes simulations for the impact of temperatures and high pressures on thin films quality

Authors

  • Abdelkader Bouazza University of Tiaret

DOI:

https://doi.org/10.31349/RevMexFis.69.021501

Keywords:

Thin film, PVD process, Sputtering technique, Plasma

Abstract

The quality of thin films represents the key to any improvement made in the device components manufacturing, and the way to obtain this quality based on deposition parameters takes the attention of our group. In this work, using the sputtering technique in the context of the Monte-Carlo approximation, an investigation of the effect of temperature and elevated pressure on the number of ejected particles and hence their deposition and the creation of finest thin films are applied. A vacuum chamber with 30x30x50 cm in dimension holding a magnetron which has a 2 cm in radius circular target was created. Inside this chamber, 105 particles of Argon (Ar) followed by the same number of xenon (Xe) gas are injected. This target moves away by 15cm from the substrate (with 7 cm in radius), containing three materials (Silicon (Si), germanium (Ge), and copper (Cu)) widely used in advanced technologies as in electronics and photovoltaic cells panels. Evident and satisfactory results were obtained, demonstrating that increasing pressure (0.5, 2, and 5 Pa) for both gases drops off in a spectacular way the total number (with different values) of the material particles reaching the substrate and disrupting the morphology of the thin films. moreover, and contrary to pressure, it has also been proved that mounting gas temperatures of 100, 300, and 600 K, representing three different states in kelvin degrees, where 100 K-173°C for the low (cold), 300 K27°C for the regular (atmospheric) and 600 K327°C for the high (warm) instances, supply a large number of materials atoms in substrate-level which conduct to the finest quality of the thin films. In addition, germanium gives the best results compared to silicon and copper.

References

Ab.Bouazza, A. settaouti, Monte Carlo simulation of the influence of pressure and target-substrate distance on the sputtering process for metal and semiconductor layers, Mod. Phys. Lett. B. 30 (2016) 1650253, https://doi.org/10.1142/S0217984916502535

A. Bouazza, A. settaouti, Study and simulation of the sputtering process of material layers in plasma, Monte Carlo Methods Appl. 22 (2016) 149, https://doi.org/10.1515/mcma-2016-0106

A. Bouazza, A. settaouti, Understanding the contribution of energy and angular distribution in the morphology of thin films using Monte Carlo simulation, Monte Carlo Methods Appl. 24 (2018) 215, https://doi.org/10.1515/mcma-2018-0019

S. E. C. Refas, A. Bouazza, and Y. Belhadji, 3D sputtering simulations of the CZTS, Si and CIGS thin films using MonteCarlo method, Monte Carlo Methods Appl. 27 (2021) 373, https://doi.org/10.1515/mcma-2021-2094

A. Bouazza, Sputtering of semiconductors, conductors, and dielectrics for the realization of electronics components thinfilms, International Journal of Thin Film Science and Technology. 11 (2022) 225, https://doi.org/10.18576/ijtfst/110210

C. A. Hernández-Gutiérrez et al., The role of SnO2 high resistivity transparent layer deposited onto commercial conducting glass as front contact in superstrate configuration thin films solar cells technology: influence of the deposition technique., Rev. Mex. Fis. 65 (2019) 554, https://doi.org/10.31349/RevMexFis.65.554

H. A. Macleod, Recent developments in deposition techniques for optical thin films and coatings, Optical Thin Films and Coatings. (2018) 3, https://doi.org/10.1016/B978-0-08-102073-9.00001-1

S. Bairagi, K. Järrendahl, F. Eriksson, L. Hultman, J. Birch, and C.L. Hsiao, Glancing angle deposition and growth mechanism of inclined AlN nanostructures using reactive magnetron sputtering, Coatings. 10 (2020) 768, https://doi.org/10.3390/coatings10080768

A. Bouazza, Simulation of the Deposition of Thin-Film Materials Used in the Manufacturing of Devices with Miniaturized Circuits. J. Surf. Investig. 16 (2022) 1221. https://doi.org/10.1134/S1027451022060283

R. Tang et al., Controlled sputtering pressure on high-quality Sb2Se3 thin film for substrate configurated solar cells, Nanomaterials. 10 (2020) 574, https://doi.org/10.3390/nano10030574

N. Akcay, N. A. Sonmez, E. P. Zaretskaya, and S. Ozcelik, Influence of deposition pressure and power on characteristics of RF-Sputtered Mo films and investigation of sodium diffusion in the films, Current Applied Physics. 18 (2018) 491, https://doi.org/10.1016/j.cap.2018.02.014

T. Li et al., Influence of pressure on the properties of AlN deposited by DC reactive magnetron sputtering on Si (100) substrate, Micro and Nano Letters. 14 (2019) 146, https://doi.org/10.1049/mnl.2018.5293

X. Q. Tan, J. Y. Liu, J. R. Niu, J. Y. Liu, and J. Y. Tian, Recent progress in magnetron sputtering technology used on fabrics, Materials. 11 (2018) 1953, https://doi.org/10.3390/ma11101953

M. Zubkins, H. Arslan, L. Bikse, and J. Purans, High power impulse magnetron sputtering of Zn/Al target in an Ar and Ar/O2 atmosphere: The study of sputtering process and AZO films, Surface and coatings technology. 369 (2019) 156, https://doi.org/10.1016/j.surfcoat.2019.04.044

X. Hao et al., Constructing multifunctional interphase between and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries, Advanced Energy Materials. 9 (2019) 1901604, https://doi.org/10.1002/aenm.201901604

M. Qadir, Y. Li, and C. Wen, Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review, Acta biomaterialia. 89 (2019) 14, https://doi.org/10.1016/j.actbio.2019.03.0064

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, SRIM-The stopping and range of ions in matter, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 268 (2010) 1818, https://doi.org/10.1016/j.nimb.2010.02.091

U. Saha, K. Devan, and S. Ganesan, A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013, Journal of Nuclear Materials. 503 (2018) 30, https://doi.org/10.1016/j.jnucmat.2018.02.039

V. I. Shulga, Note on the artefacts in SRIM simulation of sputtering, Applied Surface Science. 439 (2018) 456, https://doi.org/10.1016/j.apsusc.2018.01.039

J. Wang, M. B. Toloczko, N. Bailey, F.A. Garner, J. Gigax, and L. Shao, Modification of SRIM-calculated dose and injected ion profiles due to sputtering, injected ion buildup and void swelling, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 387 (2016) 20, https://doi.org/10.1016/j.nimb.2016.09.015

W. Möller, and W. Eckstein, Tridyn-A TRIM simulation code including dynamic composition changes, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2 (1984) 814, https://doi.org/10.1016/0168-583X(84)90321-5

K. Van Aeken, S. Mahieu, and D. Depla, The metal flux from a rotating cylindrical magnetron: a Monte Carlo simulation, Journal of Physics D: Applied Physics. 41 (2008) 205307, https://doi.org/10.1088/0022-3727/41/20/205307

J. O. Achenbach, S. Mráz, D. Primetzhofer, and J. M. Schneider, Correlative experimental and theoretical investigation of the angle-resolved composition evolution of thin films sputtered from a compound Mo2BC target, Coatings. 9 (2019) 206, https://doi.org/10.3390/coatings9030206

M. Mickan, U. Helmersson, and D. Horwat, Effect of substrate temperature on the deposition of Al-doped ZnO thin films using high power impulse magnetron sputtering, Surface and Coatings Technology. 347 (2018) 245, https://doi.org/10.1016/j.surfcoat.2018.04.089

F. Moens, I. C. Schramm, S. Konstantinidis, and D. Depla, On the microstructure of magnesium thin films deposited by magnetron sputtering, Thin Solid Films. 689 (2019) 137501, https://doi.org/10.1016/j.tsf.2019.137501

N. Nedfors et al., The influence of pressure and magnetic field on the deposition of epitaxial TiBx thin films from DC magnetron sputtering, Vacuum. 177 (2020) 109355, https://doi.org/10.1016/j.vacuum.2020.109355

C. Oh et al., Influence of oxygen partial pressure in In-Sn-GaO thin-film transistors at a low temperature, Journal of Alloys and Compounds. 805 (2019) 211, https://doi.org/10.1016/j.jallcom.2019.07.091

P. C. Huang, C. H. Huang, M. Y. Lin, C. Y. Chou, C. Y. Hsu, and C. G. Kuo, The effect of sputtering parameters on the film properties of molybdenum back contact for CIGS solar cells, International Journal of Photoenergy. 2013 (2013) 390824, https://doi.org/10.1155/2013/390824

S. H. Kim, Y. L. Choi, Y. S. Song, D. Y. Lee, and S. J. Lee, Influence of sputtering parameters on microstructure and morphology of TiO2 thin films, Materials letters. 57 (2002) 343, https://doi.org/10.1016/S0167-577X(02)00788-7

Z. Bi, Z. Zhang, and P. Fan, Effect of sputter deposition parameters on the characteristics of PZT ferroelectric thin films, Journal of Physics: Conference Series. 61 (2007) 24, https://doi.org/10.1088/1742-6596/61/1/024. 31. W. Khan, Q. Wang, X. Jin, and T. Feng, The effect of sputtering parameters and doping of copper on surface free energy and magnetic properties of iron and iron nitride nano thin films on polymer substrate, Materials. 10 (2017) 217, https://doi.org/10.3390/ma10020217

A. Settaouti, and L. Settaouti, Simulation of the transport of sputtered atoms and effects of processing conditions, Applied surface science. 254 (2008) 5750, https://doi.org/10.1016/j.apsusc.2008.03.042

A. Bouazza, Deposition of Thin Films Materials used in Modern Photovoltaic Cells, International Journal of Thin Film Science and Technology 11 (2022) 313, https://doi.org/10.18576/ijtfst/110308

D. Depla, and W. P. Leroy, Magnetron sputter deposition as visualized by Monte Carlo modeling, Thin Solid Films. 520 (2012) 6337, https://doi.org/10.1016/j.tsf. 2012.06.032

S. Mahieu, G. De Winter, D. Depla, R. De Gryse, and J. Denul, A model for the development of biaxial alignment in yttria stabilized zirconia layers, deposited by unbalanced magnetron sputtering, Surface and Coatings Technology. 187 (2004) 122, https://doi.org/10.1016/j.surfcoat.2004.01.008

S. Mahieu, P. Ghekiere, G. De Winter, R. De Gryse, D. Depla, and O. I. Lebedev, Biaxially aligned Yttria Stabilized Zirconia and Titanium Nitride layers deposited by unbalanced magnetron sputtering, Solid State Phenomena. 105 (2005) 447, https://doi.org/10.4028/www.scientific.net/SSP.105.447

P. Ghekiere, S. Mahieu, G. De Winter, R. De Gryse, and D. Depla, Influence of the deposition parameters on the biaxial alignment of MgO grown by unbalanced magnetron sputtering, Journal of crystal growth. 271 (2004) 462, https://doi.org/10.1016/j.jcrysgro.2004.08.010

S. Mahieu, G. Buyle, D. Depla, S. Heirwegh, P. Ghekiere, and R. De Gryse, Monte Carlo simulation of the transport of atoms in DC magnetron sputtering, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 243 (2006) 313, https://doi.org/10.1016/j.nimb.2005.09.018

A. Baptista, F. Silva, J. Porteiro, J. Míguez, and G. Pinto, Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands, Coatings. 8 (2018) 402, https://doi.org/10.3390/coatings8110402

B. Rother, G. Ebersbach, and H. M. Gabriel, Substrate-rotation systems and productivity of industrial PVD processes, Surface and Coatings Technology. 116 (1999) 694, https://doi.org/10.1016/S0257-8972(99)00120-6

C. G. Granqvist, Preparation of thin films and nanostructured coatings for clean tech applications: A primer, Solar Energy Materials and Solar Cells. 99 (2012) 166, https://doi.org/10.1016/j.solmat.2011.11.048

V. S. Voitsenya et al., Effect of sputtering on self-damaged recrystallized W mirror specimens, Journal of nuclear materials. 434 (2013) 375, https://doi.org/10.1016/j.jnucmat.2012.12.007

H. C. Barshilia, A. Ananth, J. Khan, and G. Srinivas, Ar+ H2 plasma etching for improved adhesion of PVD coatings on steel substrates, Vacuum. 86 (2012) 1165, https://doi.org/10.1016/j.vacuum.2011.10.028

P. A. Steinmann, and H. E. Hintermann, Adhesion of TiC and Ti (C, N) coatings on steel, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films. 3 (1985) 2394, https://doi.org/10.1116/1.572845

H. van Lente, and J. I. van Til, Articulation of sustainability in the emerging field of nanocoatings, Journal of Cleaner Production. 16 (2008) 967, https://doi.org/10.1016/j.jclepro.2007.04.020

G. Hobler, R. M. Bradley, and H. M. Urbassek, Probing the limitations of Sigmund’s model of spatially resolved sputtering using Monte Carlo simulations, Physical Review B. 93 (2016) 205443, https://doi.org/10.1103/PhysRevB.93.205443

H. Hofsäss, and O. Bobes, Prediction of ion-induced nanopattern formation using Monte Carlo simulations and comparison to experiments, Applied Physics Reviews. 6 (2019) 021307, https://doi.org/10.1063/1.5043188

T. Smy et al., Three-dimensional simulation of film microstructure produced by glancing angle deposition, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films. 18 (2000) 2507, https://doi.org/10.1116/1.1286394

P. Meakin, and J. Krug, Three-dimensional ballistic deposition at oblique incidence, Physical Review A. 46 (1992) 3390, https://doi.org/10.1103/PhysRevA.46.3390

A. Siad, A. Besnard, C. Nouveau, and P. Jacquet, Critical angles in DC magnetron glad thin films, Vacuum. 131 (2016) 305, https://doi.org/10.1016/j.vacuum.2016.07.012

R. Mareus, C. Mastail, F. Anğay, N. Brunetière, and G. Abadias, Study of columnar growth, texture development and wettability of reactively sputter-deposited TiN, ZrN and HfN thin films at glancing angle incidence, Surface and Coatings Technology. 399 (2020) 126130, https://doi.org/10.1016/j.surfcoat.2020.126130

G. Betz, and K. Wien, Energy and angular distributions of sputtered particles, International Journal of Mass Spectrometry and Ion Processes. 140 (1994) 1, https://doi.org/10.1016/0168-1176(94)04052-4

O. M. Mattox, Handbook of physical vapor deposition (PVD) processing, William Andrew. (2010)

K. Seshan, (Ed.), Handbook of thin film deposition, William Andrew. (2012)

S. M. Rossnagel, Thin film deposition with physical vapor deposition and related technologies, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films. 21 (2003) 574, https://doi.org/10.1116/1.1600450

S. M. Rossnagel, M. A. Russak, and J. J. Cuomo, Pressure and plasma effects on the properties of magnetron sputtered carbon films, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films. 5 (1987) 2150, https://doi.org/10.1116/1.574941

S. N. Sambandam, S. Bhansali, V. R. Bhethanabotla, and D. K. Sood, Studies on sputtering process of multicomponent Zr-TiCu-Ni-Be alloy thin films, Vacuum. 80 (2006) 406, https://doi.org/10.1016/j.vacuum.2005.07.037

S. Mahieu, G. Buyle, D. Depla, S. Heirwegh, P. Ghekiere, and R. De Gryse, Monte Carlo simulation of the transport of atoms in DC magnetron sputtering, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 243 (2006) 313, https://doi.org/10.1016/j.nimb.2005.09.018

S. Kadlec, C. Quaeyhaegens, G. Knuyt, and L. M. Stals, Energy distribution of ions in an unbalanced magnetron plasma measured with energy-resolved mass spectrometry, Surface and Coatings Technology. 89 (1997) 177, https://doi.org/10.1016/S0257-8972(96)03088-5

Z. L. Liu, L. Yu, K. L. Yao, X. B. Jing, X. A. Li, and X. Z. Sun, Kinetic Monte Carlo simulation of deposition of energetic copper atoms on a Cu (001) substrate, Journal of Physics D: Applied Physics. 28 (2005) 4202, https://doi.org/10.1088/0022-3727/38/23/010.

Downloads

Published

2023-03-01

How to Cite

[1]
A. Bouazza, “Investigation using Monte-Carlo codes simulations for the impact of temperatures and high pressures on thin films quality”, Rev. Mex. Fís., vol. 69, no. 2 Mar-Apr, pp. 021501 1–, Mar. 2023.