Water adsorption on rutile titanium dioxide (110): Theoretical study of the effect of surface oxygen vacancies and water flux in the steady state case


  • Fatima Bouzidi Hassiba Benbouali University of Chlef
  • Moustafa Tadjine Hassiba Benbouali University of Chlef
  • Abderrezak Berbri Hassiba Benbouali University of Chlef
  • Ahmed Bouhekka University of Tissemsilt




Water adsorption, rutile titanium dioxide (110), Oxygen vacancies, Hydroxyls groups, H2O flux, Steady state.


The aim purpose of the present work is highlighting the impact of surface oxygen vacancies and H2O flux on the behavior of water adsorption at the rutile titanium dioxide (110). Therefore, a theoretical model, based on molecular and dissociation mechanisms at different surface atomic sites, was formulated in a system of partial differential coupled equations. The proposed model used to study, in an atomic scale, this complex phenomenon of adsorption governed by several factors including surface vacancies defects and water flux. The findings of the solution of the system of equations in the steady state case, presented in this paper, strongly indicated that the rate coverage of surface oxygen vacancies has an important role in the dissociation of H2O as well as the flux which is a key factor in the behavior of water adsorption on the TiO2 (110) and the rate coverage of OH groups.


M. Elahifard, H. Heydari, R. Behjatmanesh Ardakani, P. Bijan, S. Ahmadvand , A computational study on the effect of Ni impurty and O-vacancy on the adsorption and dissociation of water molecules on the surface of anatase (101), J. Phys. Chem. Sol. 136 (2020) 109176, https://doi.org/10.1016/j.jpcs.2019.109176.

U. Diebold, The surface science of titanium dioxide, J. Surf. Sci. Rep. 48 (2003) 53, https://doi.org/10.1016/s0167-5729(02)00100-0.

U. Diebold, Perspective: A controversial benchmark system of water-oxide interfaces: H2O/TiO2 (110), J. Chem. Phys. 147 (2017). 040901, https://dx.doi.org/10.1063/1.4996116.

B. Wei, F. Tielens, M. Calatayud, Understanding the role of rutile TiO2 surface orientation on molecular hydragenactivation, J. Nanomaterials (Basel). 9 (2019)1199, https://doi.org/10.3390/nano9091199.

M.A. Shaheed, F.H.Hussein, Preparation and applications of titanium dioxide and zinc oxide nanoparticles, J. Environ. Anal. Chem. 2 (2014) 1000e109. http://dx.doi.org/10.4172/jreac.1000e109. 6. M.L. Weichman, S. Debnath, J. T. Kelly, S. Gewinner, W. Schöllkop, D.M. Neumark, K.R. Asmis, dissociative water adsorption on gas-phase titanium dioxide cluster anions probed with infrared photodissociation spectroscopy, J. Top. Catal. 61 (2018) 92, http://dx.doi.org/10.1007/s11244-017-0863-4.

K.R. Asmis, Dissociative water adsorption on gas phase titanium dioxide cluster anions probed with infrared photo dissociation spectroscopy, J. Top. Catal. 61(2018) 92, https://doi.org/10.1007/s11244-017-0863-4.

B.G. Obeid, A.S. Hameed, H.H. Alaaraji, Structural and optical properties of TiO2, Digest Journal of Nanomaterials and Biostructures. 12 (2017) 1239-1246. https://www.researchgate.net/publication/322399704.

C. Zhao, Y. Yang, L. Luo, S. Shao, Y. Zhou, Y. Shao, F. Zhan, J. Yang, Y. Zhou, ϒ-ray induced formation of oxygen vacancies and Ti 3+ defects in anatase TiO2 for efficient photocatalytic organic pollutant degradation, J. Sci. Total Environ. 747 (2020) 141533, https://doi.org/10.1016/j.scitotenv.2020.141533.

A. Khataee, G. Ali Mansoori, Nanostructured materials titanium dioxide: properties, preparation and applications, World Scientific Publishing Company, London, 2012.

Y. Lan, Y. Lu, Z. Ren, Mini review on photocatalysis of titanium dioxide nanoparticles and thier solar applications, J. Nanoen. 2 (2013) 1031, http://dx.doi.org/10.1016/j.nanoen.2013.04.002.

H. Tributsch, T. Bak, J. Nowotny, M.K. Nowotny, L.R. Sheppard, Photoreactivity models for titanium dioxide with water, J. Ener. Mat. 3 (2008) 158, https://doi.org/ 10.1179/174892409x435770.P.

Krùger, J. Jupille, S. Bourgeois, B. Domenichini, A. Verdini, L. Floreano, and A. Morgante, Intrinsic nature of the excess electron distribution at the TiO2 (110) surface, J. Phys. Rev. Lett. 108 (2012) 126803. https://doi.org/ 10.1103/physrevlett.108.126803.

T. Minato, M. Kawai, Y. Kim, Creation of single oxygen vacancy on titanium dioxide surface, J. Mat. Res. 27 (2012) 2237, https://doi.org/ 10.1557/jmr.2012.157.

C. Di Valentin, G. Pacchioni, A. Selloni, Reduced and n-type dopped TiO2 nature of Ti3+ species, J. Phys. Chem. C 113 (2009) 20543,https://doi.org/ 10.1021/jp9061797.

X. Chen, S.S. Mao, Nanomaterials: Synthesis, Properties, Modifications and Properties, J. Chem. Rev. 107 (2007) 2891, https://doi.org/ 10.1021/cr0500535.

S. Wendt, P.T. Sprunger, E. Lira, G.K. H. Madsen, Z. Li, J. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, E. Lægsgaard, B. Hammer, F. Besenbacher, The role of interstitial in the Ti 3d defect state in the band gap if titanium, J. Sci. 320 (2008) 1755, https://doi.org/ 10.1126/science.1159846.

F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment, J. Appl. Catal. A 359 (2009) 25, http://dx.doi.org/10.1016/j.apcata.2009.02.043.

M.A. Henderson, The interaction of water with solid surfaces: fundamental aspects revisited, J. Surf. Sci Rep. 46 (2002) 1, http://dx.doi.org/10.1016/s0167-5729 (01)00020-6.

P.A. Thiel, T.E. Madey, The interaction of water with solid surfaces: fundamental aspects, J. Surf. Sci. Rep. 7 (1987) 211, http://dx.doi.org/10.1016/0167-5729 (87)90001-x.

C. Sun, L.M. Liu, A. Selloni, G.Q. Lua, S.C. Smith, Titania-water interaction: a review of theorical studies, J. Mater. Chem. 20 (2010)10319, http://dx.doi.org/10.1039/c0jm01491e.

L. Largitte, R. Pasquier, A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon, J. Chem. Eng. Res. Des. 109 (2016) 495, http://dx.doi.org/10.1016/j.cherd.2016.02.006.

N.H. Turner, Kinetics of chemisorption: An examination of the Elovich equation, J. Catal. 36 (1975) 262, http://dx.doi.org/10.1016/ 0021-9517(75)90035-4.

K.A. Connors, Chemical Kenetics: The Study of Reaction Rates in Solution, VHP Publisher, United States of America, 1990

A.G. Makeev, M.M. Slinko, D. Luss, Mathematical modeling of oscillating CO oxidation on Pt group metals at near atmospheric pressure: activity of metallic and oxidized surfaces, J. Appl. Catal. A: Genaral 571 (2018) 127,http://dx.doi.org/10.1016/ j.apcata.2018.11.015.

M. Ohman, D. Persson, C. Leygraf, In situ ATR-FTIR studies of the aluminium/polymer interface upon exposure to water and electrolyte, J. Prog. Org. Coat. 57 (2006) 78, https://doi.org/10.1016/ j.porgcoat.2006.07.002.

E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez, M. E. Zappi, Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws, J. Clean. Engin. Tech. 1 (2020) 100032, https://doi.org/10.1016/j.clet.2020.100032.

S. Wendt, R. Schaub, J. Matthiesen, E.K. Vestergaard, E. Wahlstrom, M.D. Rasmussen, P. Thostrup, L.M. Molina, E. Lægsgaard, I. Stensgaard, B. Hammer, F. Besenbacher, Oxygen vacancies on TiO2 and their interaction with H2O and O2: A combined high- resolution STM and DFT study, J. Surf .Sci. 598 (2005) 226, https://doi.org/10.1016/j.susc.2005.08.041.

D. Brinkley, M. Dietrich, T. Engel, P. Farrall, G. Gantner, A. Schafer, A. Szuchmacher, A modulated molecular beem study of the extent of H2O dissociation on TiO2 (110), J. Surf .Sci. 395 (1998) 292, https://doi.org/10.1016/s.0039-6028(97)00633-x.

R. Mu, Z.j. Zhao, Z. Dohnálek, J. Gong, Structural Motifs of Water on Metal Oxide Surfaces, J. Chem. Soc. Rev. 46 (2017) 1785,https://doi.org/10.1039/c6cs00864j.

N. kumar, S. Neogi, P.R.C. Kent, A.V. Bandura, J.D. Kubichi, D.J. Wesolowski, D. Cole, J. Sofo, Hydrogen bonds and vibrations of water interaction on (110) rutile, J. Phys. Chem. C 113 (2009) 13732, https://doi.org/10.1020/jp901665e.

A. Fahmi, C.A. Minot, Theorical investigation of water adsorption on titanium dioxide surfaces, J. Surf. Sci. 304 (1994) 343, https://doi.org/10.1016/0039-6028 (94)91345-5.

J. Zhang, R. Zhang, B. Wang , L. Ling, Insight into the adsorption and dissociation of water over deferent cuo(111) surfaces: the effect of surface structures, J. Appl. Surf. Sci. 364 (2016) 758, https://doi.org/10.1016/j.apsusc.2015.12.211.

P. Scheiber, M. Fidler, O. Dulub, M. Schmid, U. Diebold, W. Hou, U. Aschauer, A. Selloni, (Sub) Surface Mobility of Oxygen Vacancies at the TiO2 Anatase (101) Surface, J. Phys. Rev. Lett. 109 (2012) 136103, https://doi.org/10.1103/PhysRevLett.109.136103.

O. Dulub, C.D. Valentin, A. Selloni, U. Diebold, Structure, defects, and impurities at the rutile TiO2 (011)-(2 x 1) surface: A scanning tunnelling microscopy study, J. Surf. Sci. 600 (2006) 4407, https://doi.org/10.1016/j.susc.2006.06.042.

Z. Zhang, O. Bondarchuk, B.D. Kay, J.M. White, Z. Dohnalek, Imaging water dissociation on TiO2 (110): Evidence for inequivalent geminate OH groups, J. Phys. Chem. B 110 (2006) 21840, https://doi.org/10.1021/jp063619h.

H. Heydari, M.R. Elahifard , R. Behjatmanesh-Ardakania, Role of oxygen vacancy in the adsorption and dissociation of the water molecules on the surfaces of pure and Ni doped rutile (110): A periodic full- potential DFT study, J. Surf. Sci. 679 (2019) 218, https://doi.org/10.1016/j.susc.2018.09.014.

S. Malali, M. Foroutan, Dissociative behavior of water molecules on defect free and defective rutile TiO2 (101) surfaces, J. Appl. Surf. Sci. 457 (2018) 295, https://doi.org/10.1016/j.apsusc.2018.06.275.

F. Bouzidi, M. Tadjine, A. Berbri, A. Bouhekka, the impact of temperature and H2O flux on the adsorption of water on rutile(110), InterConf. 95 (2022) 652, https://doi.org/10.51582/interconf.19-20.01.2022.073

N. Bundaleski, A.G. Silva, U. Schröder, A.M.C. Moutinho, O. Teodoro, Adsorption dynamics of water on the surface of TiO2 (110), J. Phys. Conf. Ser. 257 (2010) 012008, https://doi.org/10.1088/1742-6596/257/1/012008.

K. Sebbari, C. Domain, J. Roques, H. Perron, E. Simoni, H. Catalette, Investigation of hydrogen bonds and temperature effects on the water monolayer adsorption on rutile TiO2 (110) by first- principles molecular dynamics simulations, J. Surf. Sci. 605 (2011) 1275, https://doi.org/10.1016/j. susc.2011.04.015.

M.B. Hugenschmidt, L. Gamble, C.T. Campbell, The interaction of H2O with a TiO2 Surface, J. Surf. Sci. 302 (1994) 329, https://doi.org/10.1016/0039-6028 (94)90837-0.

M.F. Calegari Andrade, H.Y. Ko, L. Zhang, R. Car, A. Selloni, Free Energy of Proton Transfer at the Water –TiO2 Interface from Ab initio Deep Potential Molecular Dynamics, J. Chem. Sci. 9 (2020) 2335, https://doi.org/10.1039/c9sc05116c.

Z.T. Wang, Y.G. Wang, R. Mu, Y. Yoon, A. Dahal, G.K. Schenter, V.A. Glezakou, R. Rousseau, L. Lyubinetsky, Z. Dohnalek, Probing equilibrium of molecular and deprotonated water on TiO2 (110), J. Proc. Nat. Acad. Sci. 114 (2017) 1801, https://doi.org/ 10.1073/pnas.1613756114.

G. Fazio, D. Selli, L. Ferraro, G. Seifert, C. Di Valentin, Curved TiO2 nanoparticles in water: Short (chemical) and long (physical) range interfacial effects. J. ACS Appl. Mater. Interfaces. 35 (2018) 29943, https://doi.org/10.1021/acsami.8b08172.

R. Schaub, N. Lopez, E. Laegsgaard, J.K. Norskov, F. Besenbacher, Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110), J. Phys. Rev. Lett. 87 (2001) 266104, https://doi.org/10.1103/PhysRevLett.87.266104.

J.V. Barth, H. Brune, B. Fischer, J. Weckesser, K. Kern, Dynamics of surface migration in the weak corrugation regime, J. Phys. Rev. Lett. 84 (2000) 1732, https://doi.org/10.1103/PhysRevLett.84.1732.

U. Aschauer, Y. He, H. Cheng, S. C. Li, U. Diebold, A. Selloni, Influence of subsurface defects on the surface reactivity of TiO2 : water on anatase (101), J. Phys. Chem. C 114 (2010) 1278, https://doi.org/10.1021/jp910492b.

X. Pan, M.Q. Yang, X. fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications, J. Nanoscale 5 (2013) 3601, https://doi.org/ 10.1063/1.4967520.

S. Banerjee, D.D. Dioysiou, S.C. Pillai, Self-cleaning applications of TiO2 by photo- induced hydrophylicity and photocatalysis, J. Appl. Catal. B: Environ. 176 (2015) 396, https://doi.org/ 10.1039/c2ee03390a.

Z. Futera, N.J. English, Oscillating electric-field effects on adsorbed-water at rutile- and anatase-TiO2 surfaces, J. Chem. Phys. 145(2016) 204706, https://doi.org/10.1063/1.4967520.

M. Menetrey, A. Markovits, C. Minot, reactivity of a reduced metal oxide surface: hydrogen, water and carbon monoxide adsorption on oxygen defective rutile TiO2 (110), J. Surf. Sci. 524 (2003) 49, https://doi.org/ 10.1016/s0039-6028(02)02464-0.

L. Huang, K. Gubbins, L. Li, and X. Lu, Water on titanium dioxide surface: A revisit by reactive molecular dynamics simulations, J. Langmuir. 30 (2014) 14832, https://doi.org/ 10.1021/la5037426.

A.V. Bandura, D.G. Sykes, V. Shapovalov, T.N. Troung, J.D. Kubicki, and R.A. Evarestov, Adsorption of water on the TiO2 rutile (110) surface: a comparison of periodic and embedded cluster calculations, J. Phys. Chem. B 108 (2004)7844, https://doi.org/ 10.1021/jp037141i.

L.-Q. Wang ,K.F. Ferris ,P.X. Skiba, A.N. Shultz, D.R. Baer, M.H. Engelhard, Interactions of liquid and vapor water with stoichiometric and defective TiO2 (100) surfaces, J. Surf. Sci. 440 (1999) 60, https://doi.org/10.1016/S0039-6028(99)00677-9.

P.J.D. Lindan, C. Zhang, Comment on “Molecular Chemisorption as the Theoretically Preferred Pathway for Water Adsorption on Ideal Rutile TiO2 (110)” Phys. Rev. Lett. 95 (2005) 029601, https://doi.org/10.1103/PhysRevLett.95.029601

Z. Dohnálek, I. Lyubinetsky and R. Rousseau, Thermally-driven processes on rutile TiO2 (1 1 0)-(1x 1): A direct view at the atomic scale, J. Prog. Surf. Sci. 85 (2010) 161, https://doi.org/ 10.1016/j.progsurf.2010.03.001.

K.P. Gopinath, N.V. Madhav, A. Krishnan, R. Malolan, G. Rangarajan, present application of titanium dioxide for the photocatalytic removal of pollutants from water: A review, J. Environ. Manag. 270 (2020) 110906, https://doi.org/10.1016/j.jenvman.2020.1110906.

L.J.D. Lindan, N.M. Harrison and M.J. Gillan, Mixed dissociative and molecular adsorption of water on the rutile (110) surface, J. Phys. Rev. Lett. 80 (1998)762, https://doi.org/ 10.1016/j.susc.2005.06.021.




How to Cite

F. Bouzidi, . M. Tadjine, A. Berbri, and A. Bouhekka, “Water adsorption on rutile titanium dioxide (110): Theoretical study of the effect of surface oxygen vacancies and water flux in the steady state case”, Rev. Mex. Fís., vol. 69, no. 3 May-Jun, pp. 031004 1–, May 2023.