Desing of grating couplers for submicron optical waveguides


  • Paola Góngora Lugo Universidad Autónoma de Baja California
  • E. E. García-Guerrero Universidad Autónoma de Baja California
  • E. Inzunza-González Universidad Autónoma de Baja California
  • E. I. Chaikina CICESE
  • Heriberto Márquez Becerra CICESE



Submicron optical waveguide, grating coupler, Al2O3


Optical coupling gratings are strategic components of integrated optics that allow the interaction of a laser signal with optical interconnects, integrated photonic microdevices and biosensors. In this work, the design of binary and sinusoidal type coupling gratings for Al2O3/SiO2/Si submicron guides operating in the visible (633 nm) and infrared (1550 nm) is presented herein. In particular, the coupling efficiency is analyzed as a function of the main design parameters: waveguide thickness, period, etch depth and incidence angle. The results indicate that coupling efficiencies of 21 and 15 percent and decoupling efficiencies of 25 and 22 percent can be obtained for binary and sinusoidal gratings, respectively, at a wavelength of 1550 nm; coupling efficiencies of 7.8 and 7.6 percent and decoupling efficiencies of 53 and 34 percent can be obtained for a wavelength of 633 nm. The proposed designs have potential applications for the fabrication of integrated circuits.


P. Wiatr, R. Forchheimer, M. Furdek, J. Chen, L. Wosinska, and D. Yuan, Hierarchical optical interconnectors saving spectrum resources in data networks, Ad. Phot. 13:909 (2017). https: //

P. Wen, P. Tiwari, S. Mauthe, H. Schmid, M. Sousa, M. Scherrer, M. Baumann, B.I. Bitachon, J. Leuthold, B. Gots- mann, and K. E. Moselund, Waveguide coupled III-V pho- todiodes monolithically integrated on Si, Nat. Communi- cations. 13:909 (2012). s41467-022-28502-6.

T. Mogami, T. Horikawa, K. Kinoshita, Y. Hagihara, J. Ushida, M. Tokushima, J. Fujikata, S. Takahashi, T. Shimizu, A. Ukita, K. Takemura, M. Kurihara, K Yashiki, D. Okamoto, Y. Suzuki. Y. Sobu. S.H. Jeong, Y. Tanaka, T. Nakamura, and K. Karuta, 1.2 Tbps/cm2 enabling silicon photonics IC technology based on 40-nm generation platform, J. Lightwave Tech. 36 20 (2018).

A.H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. No- taros, L. Alloatti,M.T. Wade, C. Sun, S.A. Kruger, H. Meng, K.A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C.V. Baiocco, M.A. Popovic, V.M. Stojanovic, and R.J. Ram, Integrating photon- ics with silicon nanoelectronics for the next generation of sys- tems on a chip, Nature 560 (2018) 1038/s41586-018-0247-3.

P. Cheben, J.H. Schmid, P.J. Bock, J. Lapointe, S. Janz, D.X. Xu, A. Densmore, A. Delage, R. Ma, R. Halir, B. Lamontange, A. Ortega-Mon ̃ux, I. Molina, J. Fedeli, M. Ibrahim, W. Ye, and TJ. Hall, Subwavelength structures in SOI waveguides, IEEE (2011). GROUP4.2011.6053709.

G. Quaranta, G. Basset, O.J.F. Martin, and B. Gallinet, Recent advances in resonant waveguide gratings, LPR Journal (2018).

C. Alonso-Ramos, A. Ortega-Mon ̃ux, L. Zavago-Peche, R. Halir, J. de-Oliva-Rubio, I. Molina-Ferna ́ndez, P. Cheben, D.-X. Xu, S.Janz, and N. Kim, Efficient fibre-chip grat- ing coupler for thick SOI rib waveguides,OSA 18 14 (2010) 15189. 10.P1.21.

Z. Zhang, X. Shan, B. Huang, Z. Zhang, C. Cheng, B. Bai, T. Gao, X. Xu, L. Zhang, and H. Chen, Efficiency enhanced grat- ing coupler por perfectly vertical fiber-tochip coupling, Mat. MDPI 13 (2020) 2681. ma13122681.

R. Marchetti, C. Lacava, L. Carrol, K. Gradkowski, and P. Minzioni, Coupling strategies for silicon photonics integrated chips, Phot. Reser. 7 2 (2019) 201. 1364/PRJ.7.000201.

C. Chang, Y. Hsu, H. Kuo, and Y. Lai, Subwavelength apodized grating coupler for silion photonics waveguide coupling, OECC (2020). OECC48412.2020.9273715.

J. Xu, D. Suarez, and D.S. Gottfired, Detection of avian influenza virus using an interferometric biosensor, A. Bio. Chem, 389 (2007). s00216-007-1525-3.

W. Liu, X. Tu, K.W. Kim, J.S. Kee, Y. Shin, K. Han, Y.J. Yoon, G.Q. Lo, and M.K. Park, Highly sensitve Mach-Zehnder

interferometer biosensor based on silicon nitride slot waveg- uide, Sen.Act. B, 188 (2013). 1016/j.snb.2013.07.053.

T.E.Gartmann,andF.Kehl,Experimentalvalidationofthesen- sitivity of waveguide grating based refractometric (bio)sensors, Biosensors, 5 (2015). bios5020187.

C.R. Doerr, L. Chen, Y.K. Chen, and L.L. Buhl, Wide bandwidth silicon nitride grating coupler, IEEE Phot. Tech., 22 (2010). 2062497.

R. Arefin, S.H. Ramachandra, H. Jung, W. You, S.M.N. Hasan, H. Turski, and S. Dwivedi, III-N/Si3N4 Integrated Pho- tonics Platform for Blue Wavelengths, IEEE J. Quan. Elec., 56 4 (2020). 2993634.

M. Mamun, S. Mukit, R. Stible, and N. Calabretta, Po- larisation independent broadband titanium dioxide photonic integrated circuits for datacom and telecom optical net- works, ICTON, (2020). ICTON51198.2020.9203202.

M. M. Naiini, C. Henkel, G. B. Malm, and M. Ostling, Double slot high-k waveguide grating couplers for silicon photonics, 70th Device Research Conference, (2012), pp. 69-70. https: //

Y.Meng,Y.Chen,L.Lu,Y.Ding,A.Cusano,J.A.Fan,Q.Hu, K. Wang, Z. Xie, Z. Liu, Y. Yang, Q. Liu, M. Gong, Q. Xiao, S. Sun, M. Zhang, X. Yuan, and X. Ni, Optical meta-waveguides for integrated photonics and beyond, Light: Science and Ap- plications 10:235 (2021). s41377-021-00655-x.

D.J. Blumenthal, Photonic integration for UV to IR applica- tions, APL Photonics 5 020903 (2020). 10.1063/1.5131683.

N. Bamiedakis, K.A. Williams, and R.V. Penty, Integrated and hybrid photonics for high-performance interconnects, 6nd ed. (Opt. Fiber Tel, 2013), pp. 377-418. https://dx.doi. org/10.1016/B978-0-12-396958-3.00011-1.

D.L. Caballero-Espitia, E.G. Lizarraga-Medina, H.A. Borbon- Nun ̃ez, O.E. Contreras-Lopez, H.Tiznado, and H. Marquez, Study of Al2 O3 thin films by ALD using H2 O and O3 as oxygen source for waveguide applications, Opt. Mat. 109 (2020) 110370. optmat.2020.110370.

M. M. Naiini, G. B. Malm, and M. Ostling, Fully etched grat- ing couplers for atomic layer deposition deposited horizontal slot waveguides, Ulis, (2011), pp. 1-4. https://dx.doi. org/10.1109/ULIS.2011.5758007.

C. Toscano, J.D., Estudio de resonadores de anillo de g ́ıas de onda,TesisdeMaestr ́ıaenCienciasCICESE,B.C.(2019).

C. Alonso-Ramos, A. Ortega-Mon ̃ux, I. Molina-Ferna ́ndez, P. Cheben, L. Zavago-Peche, and R. Halir, Efficient fiber-to-chip grating coupler for micrometric SOI rib Waveguides,OSA 18 14 (2010) 15189. 2011.We.10.P1.21.

S. Nambiar, P. Sethi, and S.K. Selvaraja, Grating-assisted fiber to chip coupling for SOI photonic circuits,Appl.Sci. 8 1142 (2018) 201.



ing coupler for slab waveguid. All Theses and Dissertations:

Paper 101., p. 193, 2003.

R.A. Larrea-Luzuriaga, A.M. Gutierrez, and P. Sanchis, An-

alytical strategy to achieve optimized grating couplers with high precision for both TE and TM polarizations on SOI platform, IEEE, pp. 1-5, (2016), 1109/ETCM.2016.7750855.

Y. Xu et al., Efficient polymer waveguide grating coupler with directionality enhancement, Optics Communications, vol. 463,

no. December 2019, p. 125418, 2020, 10.1016/j.optcom.2020.125418.

M.N.Velasco-Garcia,Opticalbiosensorsforprobingatthecel- lular level: a review of recent progress and future prospects, Seminars in Cell and Developmental Biology, vol. 20, no. 1, pp. 27-33, (2009), semcdb.2009.01.013.

J. Zhang, J. Yang, W. Wu, H. Jia, and S. Chang, High per- formance silicon-on-sapphire subwavelength grating coupler for 2.7Iˆ1⁄4m wavelength, Photoptics 1 112673 (2015). https: //




How to Cite

P. Góngora Lugo, E. E. García-Guerrero, E. Inzunza-González, E. I. Chaikina, and H. Márquez Becerra, “Desing of grating couplers for submicron optical waveguides”, Rev. Mex. Fís., vol. 69, no. 2 Mar-Apr, pp. 021303 1–, Mar. 2023.