B − L model with D5 × Z4 symmetry for lepton mass hierarchy and mixing


  • Vien Vo Van Tay Nguyen University




Lepton mass and mixing; extensions of electroweak Higgs sector; non-standard-model neutrinos; right-handed neutrinos; discrete symmetries


We propose a gauge B−L model with D5×Z4 for explaining the lepton mass and mixing through the type-I seesaw mechanism. The model can predict the neutrino masses and mixing angles including the Dirac and Majorana CP phases in good agreement with the experimental data. The model also predicts the effective neutrino parameters in highly consistent with the current constraints.


F. Feruglio, Pieces of the flavour puzzle, Eur. Phys. J. C 2015 (2015) 373, https://doi.org/10.1140/epjc/s10052-015-3576-5

P. P. Novichkov, J. T. Penedo, and S. T. Petcov, Fermion Mass Hierarchies, Large Lepton Mixing and Residual Modular Symmetries, J. High Energ. Phys. 2021 (2021) 206, https://doi.org/10.1007/JHEP04(2021)206

P. A. Zyla, et al., ( Particle Data Group), Review of Particle Physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01, https://doi.org/10.1093/ptep/ptaa104

P. F. de Salas, et al., 2020 Global reassessment of the neutrino oscillation picture, J. High Energ. Phys. 2021 (2021) 71, https://doi.org/10.1007/JHEP02(2021)071

V. V. Vien, H. N. Long, and A. E. C. Hernandez, U(1)B-L extension of the standard model with S3 symmetry, Eur. Phys. J. C 80 (2020) 725, https://doi.org/10.1140/epjc/s10052-020-8318-7

V. V. Vien, Fermion mass and mixing in the U(1)B-L extension of the standard model with D4 symmetry, J. Phys. G: Nucl. Part. Phys. 47 (2020) 055007, https://doi.org/10.1088/1361-6471/ab7ec0

V. V. Vien, H. N. Long, and A. E. C. Hernandez, Lepton masses and mixings in a T’ flavored 3-3-1 model with type I and type II seesaw mechanisms, Mod. Phys. Lett. A 34 (2019) 1950005, https://doi.org/10.1142/S0217732319500056

V. V. Vien, Lepton mass and mixing in a neutrino mass model based on S4 flavor symmetry, Int. J. Mod. Phys. A 31 (2016) 1650039, https://doi.org/10.1142/S0217751X16500391

H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1, https://doi.org/10.1143/PTPS.183.1

C. Hagedorn, M. Lindner, and F. Plentinger, Discrete flavor symmetry D5, Phys. Rev. D 74 (2006) 025007, https://doi.org/10.1103/PhysRevD.74.025007

V. V. Vien and N. V. Soi, Fermion mass and mixing in an extension of the standard model with D5 symmetry, Mod. Phys. Lett. A 35 (2020) 2050003, https://doi.org/10.1142/S0217732320500030

V. V. Vien, The Renormalizable B - L Model with D5 Discrete Symmetry for Lepton Masses and Mixings, J. Exp. Theor. Phys. 131 (2020) 730, https://doi.org/10.1134/S106377612010009X

S. Khalil1, Low scale B - L extension of the Standard Model at the LHC, J. Phys. G 35 (2008) 055001, https://doi.org/10.1088/0954-3899/35/5/055001

W. Abdallah, D. Delepine, and S. Khalil, TeV Scale Leptogenesis in B-L Model with Alternative Cosmologies, Phys.Lett. B 725 (2013) 361, https://doi.org/10.1016/j.physletb.2013.07.047

K. Aoki, et al., Is the Standard Model in the Swampland? Consistency Requirements from Gravitational Scattering, Phys. Rev. Lett. 127 (2021) 091602, https://doi.org/10.1103/PhysRevLett.127.091602

S. R. Choudhury and S. Choubey, Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios, JCAP 09 (2018) 017, https://doi.org/10.1088/1475-7516/2018/09/017

K. Abe et al., (T2K Collaboration), Constraint on the matterantimatter symmetry-violating phase in neutrino oscillations, Nature 580 (2020) 339, https://doi.org/10.1038/s41586-020-2177-0

C. E. Aalseth, et al., (Majorana Collaboration), Search for Zero-Neutrino Double Beta Decay in 76Ge with the Majorana Demonstrator, Phys. Rev. Lett. 120 (2018) 132502, https://doi.org/10.1103/PhysRevLett.120.132502

C. Alduino, et al., (CUORE Collaboration), CUORE-0 detector: design, construction and operation, JINST 11 (2016) P07009, https://doi.org/10.1088/1748-0221/11/07/P07009

C. Alduino, et al., (CUORE Collaboration), First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of 130Te, Phys. Rev. Lett. 120 (2018) 132501, https://doi.org/10.1103/PhysRevLett.120.132501

M. Auger, et al., (EXO-200 Collaboration), The EXO-200 detector, part I: detector design and construction, JINST 7 (2012) P05010, https://doi.org/10.1088/1748-0221/7/05/P05010

J. B. Albert, et al., (EXO-200 Collaboration), Search for Majorana neutrinos with the first two years of EXO-200 data, Nature 510 (2014) 229, https://doi.org/10.1038/nature13432

J. B. Albert et al., (EXO-200 Collaboration), Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector, Phys. Rev. Lett. 120 (2018) 072701, https://doi.org/10.1103/PhysRevLett.120.072701

M. Agostini et al., (GERDA Collaboration), Improved limit on neutrinoless double beta decay of 76Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 132503, https://doi.org/10.1103/PhysRevLett.120.132503

A. Gando et al., (KamLAND-Zen Collaboration), Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503, https://doi.org/10.1103/PhysRevLett.117.082503

S. Pramanick and A. Raychaudhuri, A4-based seesaw model for realistic neutrino masses and mixing, Phys. Rev. D 93 (2016) 033007, https://doi.org/10.1103/PhysRevD.93.033007




How to Cite

V. Vo Van, “B − L model with D5 × Z4 symmetry for lepton mass hierarchy and mixing”, Rev. Mex. Fís., vol. 69, no. 3 May-Jun, pp. 030803 1–, May 2023.