Effects of an external electric field on the electronic and optical properties of a Cylindrical ZnS/ZnO multi-layer quantum dot with a parabolic potential
DOI:
https://doi.org/10.31349/RevMexFis.69.011601Keywords:
electrostatic field, finite difference method, transition dipole momentAbstract
Within the framework of the effective mass approximation, a detailed investigation of the effects of an external (DC) electric field on the electronic and optical properties of a multi-layer cylindrical ZnS/ZnO quantum dot with fixed height and radius respectively at 10 nm and 5 nm, while modeling the ZnO wells using a parabolic potential. Numerical results were carried out using the Finite Difference Method (FDM), in order to compute the confinement energies, probability densities, expectation value for the potential describing a (DC) electric field for both the ground state and first excited state, and finishes by deducing the transition energy, transition dipole moment (TDM) and the absorption coefficient (AC) while taking into account multiple layer thickness configurations as we vary the electric field strength $F$. The results shows that varying the (DC) electric field strength does has an noticeable impact on the electronic and optical properties while all other inputs are kept unchanged.
References
N. Mishra, V.G. Vasavi Dutt and M.P. Arciniegas, Recent Progress on Metal Chalcogenide Semiconductor TetrapodShaped Colloidal Nanocrystals and their Applications in Optoelectronics, Chem. Mater. 31 (2019) 9216, https://doi.org/10.1021/acs.chemmater.8b05363
A. El Aouami et al., In uence of Geometrical Shape on the Characteristics of the Multiple InN/InxGa1-xN Quantum Dot Solar Cells, Nanomaterials 11 (2021) 1317, https://doi.org/10.3390/nano11051317
R.H. Inman, G.V. Shcherbatyuk, D. Medvedko, A. Gopinathan, and S. Ghosh, Cylindrical luminescent solar concentrators with near-infrared quantum dots, Opt. Express 19 (2011) 24308, https://doi.org/10.1364/OE.19.024308
Y. Arakawa, T. Nakamura, J. Kwoen, Chapter Three-Quantum dot lasers for silicon photonics, Semiconductors and Semimetals 101 (2019) 91, https://doi.org/10.1016/bs.semsem.2019.07.007
Z. Huang, M. Zimmer, S. Hepp, M. Jetter, P. Michler, Optical Gain and Lasing Properties of InP/AlGaInP Quantum-Dot Laser Diode Emitting at 660 nm, IEEE J. Quant. Electron. 55 (2019) 1, https://doi.org/10.1109/JQE.2019.2896643
M. Vafaie et al., Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1,550 nm, Matter 4 (2021) 1042, https://doi.org/10.1016/j.matt.2020.12.017
J.I. Wong et al., Dual Wavelength Electroluminescence from CdSe/CdS Tetrapods, ACS Nano 8 (2014) 2873, https://doi.org/10.1021/nn500030t
S. Chinnathambi and N. Shirahata, Recent advances on flouorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging, Sci. Technol. Adv. Mater 20 (2019) 337, https://doi.org/10.1080/14686996.2019.1590731
Y.M. Liu, Z.Y. Yu and X.M. Ren, Condensed Matter: Electronic Structure, Electrical, Magnetic, and Optical Properties: In uence of Strain-Reducing Layer on Strain Distribution of Self-Organized InAs/GaAs Quantum Dot and Redshift of Photoluminescence Wavelength, Chin. Phys. Lett. 25 (2008) 1850, https://doi.org/10.1088/0256-307X/25/5/089
D. Ahn and S.L. Chuang, Calculation of linear and nonlinear intersub-band optical absorptions in a quantum well model with an applied electric field, IEEE J. Quantum Electron. 23 (1987) 2196, https://doi.org/10.1109/JQE.1987.1073280
Y.-M. Liu, Z.Y. Yu, X.M. Ren and Z.H. Xu, Self-organized GaN/A1N hexagonal quantum-dots: strain distribution and electronic structure, Chin. Phys. 17 (2008) 3471, https://doi.org/10.1088/1674-1056/17/9/055
I. Vurgaftman and J. R. Meyer, Band parameters for nitrogencontaining semiconductors, J. Appl. Phys. 94 (2003) 3675, https://doi.org/10.1063/1.1600519
P. Reiss, M. Protiere and L. Li, Core/Shell Semiconductor Nanocrystals, Small 5 (2009) 154, https://doi.org/10.1002/smll.200800841
L.C.L.Y. Voon and M. Willatzen, The k p Method: Electronic Properties of Semiconductors (Springer Science & Business Media, 2009).
S. Rajashabala and K. Navaneethakrishnan, Effects of dielectric screening and position dependent effective mass on donor binding energies and on diamagnetic susceptibility in a quantum well, Superlattice Microstruct. 43 (2008) 247, https://doi.org/10.1016/j.spmi.2007.11.002
A.J. Peter, The effect of position dependent effective mass of hydrogenic impurities in parabolic GaAs/GaAlAs quantum dots in a strong magnetic field, Int. J. Mod. Phys. B 23 (2009) 5109, https://doi.org/10.1142/S0217979209053394
R. Khordad, Effects of position-dependent effective mass of a hydrogenic donor impurity in a ridge quantum wire, Physica E 42 (2010) 1503, https://doi.org/10.1016/j.physe.2009.12.006
E.J. Tyrrell and J.M. Smith, Effective mass modeling of excitons in type-II quantum dot heterostructures, Phys. Rev. B 84 (2011) 165328, https://doi.org/10.1103/PhysRevB.84.165328
C.E. Dreyer, A. Janotti, and C.G.V. de Walle, Effects of strain on the electron effective mass in GaN and AlN, Appl. Phys. Lett. 102 (2013) 142105, https://doi.org/10.1063/1.4801520
A.A. Konakov et al., Electronic states in spherical GaN nanocrystals embedded in various dielectric matrices: The k p-calculations, AIP Advances 6 (2016) 015007, https://doi.org/10.1063/1.4939938
A. Mielnik-Pyszczorski, K. Gawarecki and P. Machnikowski, Limited accuracy of conduction band effective mass equations for semiconductor quantum dots, Sci. Rep. 8 (2018) 2873, https://doi.org/10.1038/s41598-018-21043-3
M. El Khou, E.A. Ibnouelghazi, D. Abouelaoualim, Effects of an off-center donor impurity on the electronic and optical properties of a spherical ZnO/ZnS multi-shell quantum dot with a parabolic potential, J. Optoelectron. Adv. Mater. 24 (2022) 56.
M. El Khou, E.A. Ibnouelghazi, D. Abouelaoualim, Electronic and optical properties of an off-centre donor impurity in a WZ ZnS/ZnO/ZnS multishell spherical quantum dot, Pramana 96 (2022) 80, https://doi.org/10.1007/s12043-022-02325-y
R. Khordad, H. Bahramiyan and S.A. Mohammadi, Influence of impurity on binding energy and optical properties of lens shaped quantum dots: Finite element method and Arnoldi algorithm, Chin. J. Phys. 54 (2016) 20, https://doi.org/10.1016/j.cjph.2016.02.003
H.T. Johnson, L.B. Freund, C.D. Akyuz and A. Zaslavsky, Finite element analysis of strain effects on electronic and transport properties in quantum dots and wires, J. Appl. Phys. 84 (1998) 3714, https://doi.org/10.1063/1.368549
F.K. Boz, S. Aktas, A. Bilekkaya and S.E. Okan, The multilayered spherical quantum dot under a magnetic field, Appl. Surf. Sci. 256 (2010) 3836, https://doi.org/10.1016/j.apsusc.2010.01.036
M. S¸ahin and K. Koksal, The linear optical properties of a multi-shell spherical quantum dot of a parabolic confinement for cases with and without a hydrogenic impurity, Semicond. Sci. Technol. 27 (2012) 125011, https://doi.org/10.1088/0268-1242/27/12/125011
A. El Kadadra, K. Fellaoui, D. Abouelaoualim and A. Oueriagli, Optical absorption coefficients in GaN/Al(Ga)N double inverse parabolic quantum wells under static external electric field, Mod. Phys. Lett. B 30 (2016) 1650165, https://doi.org/10.1142/S0217984916501657
Z. Zeng, C.S. Garoufalis, A.F. Terzis and S. Baskoutas, Linear and nonlinear optical properties of ZnO/ZnS and ZnS/ZnO core shell quantum dots: Effects of shell thickness, impurity, and dielectric environment, J. Appl. Phys. 114 (2013) 023510, https://doi.org/10.1063/1.4813094
Z. Zeng, C.S. Garoufalis, and S. Baskoutas, Combination effects of tilted electric and magnetic fields on donor binding energy in a GaAs/AlGaAs cylindrical quantum dot, J. Phys. D 45 (2012) 235102, https://doi.org/10.1088/0022-3727/45/23/235102
A. Zapata, R.E. Acosta, M.E. Mora-Ramos and C. A. Duque, Exciton-related nonlinear optical properties in cylindrical quantum dots with asymmetric axial potential: combined effects of hydrostatic pressure, intense laser field, and applied electric field, Nanoscale Res. Lett. 7 (2012) 508, https://doi.org/10.1186/1556-276X-7-508
G. Liu, K. Guo, Q. Wu and J.H. Wu, Polaron effects on the optical rectification and the second harmonic generation in cylindrical quantum dots with magnetic field, Superlattices Microstruct. 53 (2013) 173, https://doi.org/10.1016/j.spmi.2012.09.007
S. Shao, K.X. Guo, Z.H. Zhang, N. Li and C. Peng, Thirdharmonic generation in cylindrical quantum dots in a static magnetic field, Solid State Commun. 151 (2011) 289, https://doi.org/10.1016/j.ssc.2010.12.003
C.H. Liu and B.R. Xu, Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot, Phys. Lett. A 372 (2008) 888, https://doi.org/10.1016/j.physleta.2007.08.046
U. e. Kalsoom, R. Yi, J. Qu and L. Liu, Nonlinear Optical Properties of CdSe and CdTe Core-Shell Quantum Dots and Their Applications, Front. Phys. 9 (2021), https://doi.org/10.3389/fphy.2021.612070
N. Zeiri, A. Naifar, S.A.-B. Nasrallah and M. Said, Impact of dielectric environment on the linear and nonlinear optical properties for CdS/ZnS cylindrical core/shell quantum dots, Chem. Phys. Lett. 744 (2020) 137215, https://doi.org/10.1016/j.cplett.2020.137215
F. Ungan, M.K. Bahar, M.G. Barseghyan, L.M. Perez and D. Laroze, Effect of intense laser and electric fields on nonlinear optical properties of cylindrical quantum dot with Morse potential, Optik 236 (2021) 166621, https://doi.org/10.1016/j.ijleo.2021.166621
X. Zhang, G. Xiong and X. Feng, Well width-dependent thirdorder optical nonlinearities of a ZnS/CdSe cylindrical quantum dot quantum well, Physica E 33 (2006) 120, https://doi.org/10.1016/j.physe.2005.11.017
M. Kouhi, Electric field effect on the quadratic electro optic effects and electro absorption process in GaN/AlGaN spherical quantum dot, Optik 127 (2016) 3379, https://doi.org/10.1016/j.ijleo.2015.12.115
M. El-Yadri et al., Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot, Appl. Surf. Sci. 441 (2018) 204, https://doi.org/10.1016/j.apsusc.2018.01.195
D.J. BenDaniel and C.B. Duke, Space-Charge Effects on Electron Tunneling, Phys. Rev. 152 (1966) 683, https://doi.org/10.1103/PhysRev.152.683.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Morad EL KHOU, M. Rzaizi, E. A. Ibnouelghazi, D. Abouelaoualim
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.