Rabi oscillations at the exceptional point in anti-parity-time symmetric diffusive systems
DOI:
https://doi.org/10.31349/RevMexFis.69.040501Keywords:
Rabi Oscillations, Parity-Time symmetry, Diffusive Heat SystemsAbstract
The motivation for this theoretical paper comes from recent experiments of a heat transfer system of two thermally coupled rings rotating in opposite directions with equal angular velocities that present anti-parity-time (APT) symmetry. The theoretical model predicted a rest-to-motion temperature distribution phase transition during the symmetry breaking for a particular rotation speed. In this work we show that the system exhibits a parity-time ($\mathcal{PT}$) phase transition at the exceptional point in which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. We analytically solve the heat diffusive system at the exceptional point and show that one can pass through the phase transition that separates the unbroken and broken phases by changing the radii of the rings. In the case of unbroken $\mathcal{PT}$ symmetry the temperature profiles exhibit damped Rabi oscillations at the exceptional point. Our results unveils the behavior of the system at the exceptional point in heat diffusive systems.
References
C. M. Bender and S. Boettcher, Real Spectra in NonHermitian Hamiltonians Having PT Symmetry, Phys. Rev. Lett., 80 (1998) 5243, https://doi.org/10.1103/PhysRevLett.80.5243.
C.M. Bender, S. Böttcher, S. and P. N. Meisinger, PT-symmetric quantum mechanics, J. Math. Phys. 40 (1999) 2201, https://doi.org/10.1063/1.532860.
C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys., 70 (2007) 947, https://doi.org/10.1088/0034-4885/70/6/R03.
C. M. Bender, D. C. Brody and H. F. Jones, Complex Extension of Quantum Mechanics, Phys. Rev. Lett. 89 (2002) 270401, https://doi.org/10.1103/PhysRevLett. 89.270401.
A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. of Math. Phys., 43 (2002) 205, https://doi.org/10.1063/1.1418246.
C. M. Bender, D. C. Brody and H. F. Jones, Must a Hamiltonian be Hermitian?, Am. J. Phys. 71 (2003) 1095, https://doi.org/10.1119/1.1574043.
C. M. Bender, B. K. Berntson, D. Parker and E. Samuel, Observation of PT phase transition in a simple mechanical system, Am. J. Phys. 81 (2013) 173, https://doi.org/10.1119/1.4789549.
A. Guo et al., Observation of PT-Symmetry Breaking in Complex Optical Potentials, Phys. Rev. Lett. 103 (2009) 093902, https://doi.org/10.1103/PhysRevLett.103.093902.
C. E. Rüter et al., Observation of Parity-Time Symmetry in Optics, Nat. Phys. 6 (2010) 192, https://doi.org/10.1038/nphys1515.
L. Chang et al., Parity-Time Symmetry and Variable Optical Isolation in Active-Passive-Coupled Microresonators, Nat. Photonics, 8 (2014) 524, https://doi.org/10.1038/nphoton.2014.133.
M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides and U. Peschel, Observation of Optical Solitons in PT-Symmetric Lattices, Nat. Commun., 6 (2015) 7782, https://doi.org/10.1038/ncomms8782.
P. Peng et al., Anti-Parity-Time Symmetry with Flying Atoms Nat. Phys. 12 (2016) 1139, https://doi.org/10.1038/nphys3842.
Y. Jiang et al., Anti-Parity-Time Symmetric Optical FourWave Mixing in Cold Atoms Phys. Rev. Lett. 123 (2019) 193604, https://doi.org/10.1103/PhysRevLett.123.193604.
Y. Choi, C. Hahn, J. W. Yoon and S.H. Song, Observation of an Anti-PT-Symmetric Exceptional Point and Energy-Difference Conserving Dynamics in Electrical Circuit Resonators, Nat. Commun. 9 (2018) 2182, https://doi.org/10.1038/s41467-018-04690-y.
X. L. Zhang, T. Jiang and C.T. Chan, Dynamically Encircling an Exceptional Point in Anti-Parity-Time Symmetric Systems: Asymmetric Mode Switching for Symmetry-Broken Modes, Light: Sci. Appl. 8 (2019) 88, https://doi.org/10.1038/s41377-019-0200-8.
C. F. Li and G. C. Guo, Experimental Simulation of AntiParity-Time Symmetric Lorentz Dynamics, Optica 6 (2019) 67, https://doi.org/10.1364/OPTICA.6.000067.
J. Zhao, Y. Liu, L. Wu, C. K. Duan, Y. X. Liu, and J. Du, Observation of Anti-PT-Symmetry Phase Transition in the Magnon-Cavity-Magnon Coupled System, Phys. Rev. Appl. 13 (2020) 014053, https://doi.org/10.1103/PhysRevApplied.13.014053.
Ying Li et al., Anti-parity-time symmetry in diffusive systems, Science 364 (2019) 170, https://doi.org/10.1126/science.aaw6259.
J. Doppler et al., Dynamically encircling an exceptional point for asymmetric mode switching, Nature 537 (2016) 76, https://doi.org/10.1038/nature18605.
H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topological energy transfer in an optomechanical system with exceptional points, Nature 537 (2016) 80, https://doi.org/10.1038/nature18604.
Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Unidirectional invisibility induced by PT-symmetric periodic structures, Phys. Rev. Lett. 106 (2011) 213901, https://doi.org/10.1103/PhysRevLett.106.213901.
B. Peng et al., Parity-time-symmetric whispering-gallery microcavities, Nat. Phys. 10 (2014) 394, https://doi.org/10.1038/nphys2927.
L. Feng et al., Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies, Nat. Mater. 12 (2013) 108, https://doi.org/10.1038/nmat3495.
L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, Singlemode laser by parity-time symmetry breaking, Science 346 (2014) 972, https://doi.org/10.1126/science.1258479.
H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity-time-symmetric microring lasers, Science 346 (2014) 975, https://doi.org/10.1126/science.1258480.
Y. Sun, W. Tan, H.Q. Li, J. Li and H. Chen, Experimental demonstration of a coherent perfect absorber with PT phase transition, Phys. Rev. Lett. 121 (2018) 073901, https://doi.org/10.1103/PhysRevLett.112.143903.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gabriel Gonzalez Contreras
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.