Green chemistry synthesis and structural and optical study of Dy2(CO3)3→ Dy2O3 transition
DOI:
https://doi.org/10.31349/RevMexFis.69.021302Keywords:
Dysprosium, absorption bands, crystalline phase, grain size, nanomaterialsAbstract
This paper presents preliminary results of Dy2(CO3)3→Dy2O3 transition have been successfully obtained by Chemical Bath Deposition technical and subsequent thermal annealing temperature at ~600 °C. Two different temperatures of ~20°C and ~90 °C ± 2 °C are chosen to carry out the nanocrystalline growth. The crystalline phase is investigated by applying X-Ray Diffraction (XRD) and some optical properties; Transmittance, Reflectivity, Normalized Absorbance, real (n) and imaginary (k) parts refractive index. The crystalline phase of these inorganic nanomaterials for Dy2(CO3)3 is orthorhombic phase, while for Dy2O3 it is cubic. Grain size average values located at ranged ~2.8-3.4 nm for Dy2(CO3)3 and ~6.5-9.6 nm for Dy2O3. Vibrational modes are identified by Raman spectroscopy, modes at ~150-1800 cm-1 frequency range assigned to internal vibrations of ion: v1-symmetric stretching (~1098 cm-1) v3-asymmetric -C-O stretching situated at ∼1063 cm-1, were observed corresponding to orthorhombic crystalline phase. The Fg+ Ag and A1g modes, corresponding to cubic phase Dy2O3. Multiple absorption bands with different relative intensities are observed at UV-Vis-NIR region, assigned to 4fs→4fs intra-electronic transitions and band gap energy. Absorption measurement were assigned to the transitions from ground state (6H15/2) to different excited states such as 4I13/2→4F7/2, 4I15/2, 6F3/2, 6F5/2, 6F7/2→6H5/2, 6F9/2→6H7/2, 6F11/2→6H9/2 and 6H11/2 of Dy3+ cation. Tauc’s plot reveals band gap situated at range ~4.66-5.17 eV for Dy2(CO3)3 and ~4.26-4.80 eV for Dy2O3 respectively.
References
K.N. Han, Characteristics of Precipitation of Rare Earth Elements with Various Precipitants, Minerals 10 (2020) 178-1-13, doi:10.3390/min10020178
M.R. Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Novrouzi, F. Faridbod, M.S. Karimi, Preparation of dysprosium carbonate and dysprosium oxide efficient photocatalyst nanoparticles through direct carbonation and precursor thermal decomposition, J. Mater. Sci. Mater. Electron. 28 (2017) 3325-3336, DOI 10.1007/s10854-016-5926-y
S. Liu, R.M. R. Jiang, F. Luo, Synthesis and structure of hydrated neodymium carbonate, J. of Crystal Growth 203 (1999) 454-457
G.S. Goff, M.R. Cisneros, C. Kluk, K. Williamson, B. Scott, S. Reilly, and W. Runde, Synthesis and Structural Characterization of Molecular Dy(III) and Er(III) Tetra-Carbonates, Inorg. Chem. 49 (2010) 6558-6564, DOI: 10.1021/ic1004598
M.S. Niasari, J. Javidi, F. Davar, Sonochemical synthesis of Dy2(CO3)3 nanoparticles, Dy(OH)3 nanotubes and their conversion to Dy2O3 nanoparticles, Ultras. Sonochem. 17 (2010) 870-877, doi:10.1016/j.ultsonch.2010.02.013
B. Vallina, J.D.R. Blanco, A.P. Brown, J.A. Blanco, L.G. Benning, Amorphous dysprosium carbonate: characterization, stability, and crystallization pathways, J. Nanopart. Res. 15 (2013) 1438-1-13, DOI 10.1007/s11051-013-1438-3
P. Kim, A. Anderko, A. Navrotsky and R.E. Riman, Trends in Structure and Thermodynamic Properties of Normal Rare Earth Carbonates and Rare Earth Hydroxycarbonates, Minerals 8 (2018) 106-1-24, doi:10.3390/min8030106
D. Hu, X. Liu, Z. Liu, X. Li, F. Tian, D. Zhu, Z. Yang, L. Wu and J. Li, Fabrication of Dy2O3 Transparent Ceramics by Vacuum Sintering Using Precipitated Powders, Magnetochem. 7 (2021) 6-1-13, https://dx.doi.org/10.3390/magnetochemistry7010006
Y.Y. Bacherikov, R.V. Konakova, O.B. Okhrimenko1, N.I. Berezovska, O.S. Lytvyn, L.M. Kapitanchuk, A.M. Svetlichny, Thin dysprosium oxide films formed by rapid thermal annealing on porous SiC substrates, SPQEO, 21(4) (2018) 360-364, doi:https://doi.org/10.15407/spqeo21.04.360
K. Xu, R. Ranjith, A. Laha, H. Parala, A.P. Milanov, R.A. Fischer, E. Bugiel, J. Feydt, S. Irsen, T. Toader, C. Bock, D. Rogalla, H.J. Osten, U. Kunze, and A. Devi, Atomic Layer Deposition of Gd2O3 and Dy2O3: A Study of the ALD Characteristics and Structural and Electrical Properties, Chem. Mater., 24(4) (2012) 651-658, https://doi.org/10.1021/cm2020862
R. Khan, N. Ilyas, M.Z. M. Shamim, M.I. Khan, M. Sohail, N. Rahman, A.A. Khan, S. Khan and A. Khan, J. Mater. Chem. C (2021) 1-70, DOI: 10.1039/D1TC03420K
S.F. Ahmed, M. Mofijur, N. Rafa, A.T. Chowdhury, S. Chowdhury, M. Nahrin, A.B.M. SaifulIslam, H.C. Ong, Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges, Environmental Res., Part A 204 (2022) 111967-1-55, https://doi.org/10.1016/j.envres.2021.111967
V. Carranza Téllez, M. Chávez Portillo, H. Juárez Santiesteban, M. Pacio Castillo, A. Cortes Santiago, M.A. Mora-Ramírez, H. Azucena Coyotecatl, O. Portillo Moreno, Green synthesis of palladium mixed with PdO nanoparticles by chemical bath deposition, Opt. Mater. 112 (2021) 110747-1-10, doi.org/10.1016/j.optmat.2020.110747
M. Chávez Portillo, O. Portillo Moreno, M.A. Mora-Ramírez, C. Bueno Avendaño, Y. Panecatl Bernal, S. Hernández Corona, J.L. Alcántara, White light upconversion in NdOHCO3 to Nd2O3 nanocrystals: Structural and optical transition, Optik 249 (2022) 168272-1-13, https://doi.org/10.1016/j.ijleo.2021.168272
M. Chávez Portillo, O. Portillo Moreno, E. Rubio Rosas, M. Zamora Tototzintle, R. Palomino Merino, G. Hernández Téllez, R. Gutiérrez Pérez, Optical and structural properties of Er2O3-ErOOH powder grown by chemical bath, Mater. Lett. 151 (2015) 134-137, http://dx.doi.org/10.1016/j.matlet.2015.03.042
N. Shanmugam, R. Pugazhendhi, R.M. Elavarasan, P. Kasiviswanathan and N. Das, Anti-Reflective Coating Materials: A Holistic Review from PV Perspective, Energies 13 (2020) 2631-1-93; doi:10.3390/en13102631
O. Portillo Moreno, R. Gutiérrez Pérez, R. Palomino Merino, M. Chávez Portillo, G. Hernández Téllez, E. Rubio Rosas, Optical and structural properties of PbSIn3+ nanocrystals grown by chemical bath, Thin Solid Films 616 (2016) 800-807, http://dx.doi.org/10.1016/j.tsf.2016.10.01
F.L. Leite, C.C. Bueno, A.L.D. Róz, E.C. Ziemath and O.N. Oliveira Jr., Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy, Int. J. Mol. Sci. 13 (2012) 12773-12856, doi:10.3390/ijms131012773
M.M. Reif, C. Oostenbrink, Toward the correction of effective electrostatic forces in explicit solvent molecular dynamics simulations: restraints on solvent generated electrostatic potential and solvent polarization, Theor. Chem. Acc. 2 (2015) 134-1-19, DOI 10.1007/s00214-014-1600-8
J.F. Truchona, A. Nicholl'sc, J.A. Grantd, R.I. Iftimiea, B. Rouxe, and C.I. Bayly, Using electronic polarization from the internal continuum (EPIC) for intermolecular interactions, J. Comput. Chem. 31(4) (2010) 811-824. doi:10.1002/jcc.21369.
O. Portillo Moreno, R. Gutiérrez Pérez, M. Chávez Portillo, M.E. Araiza García, G.E. Moreno, S. Cruz Cruz, E. Rubio Rosas, M. Hernández Lazcano, Morphological, optical and structural analysis in CdS, CdS-CdCO3 and CdCO3 thin solid films grown by chemical bath, Optik 157 (2018) 388-399, https://doi.org/10.1016/j.ijleo.2017.11.036
M.S. Silberberg, Chemistry. The Molecular Nature of Matter and Change, 2nd Ed. Boston: McGraw-Hill, (2016) 374-384
G. Albano, G. Pescitelli, L.D. Bari, Chiroptical Properties in Thin Films of π Conjugated Systems, Chemical Reviews, Chem. Rev. 120 (2020) 10145-10243, https://dx.doi.org/10.1021/acs.chemrev.0c00195
O. Portillo Moreno, R. Gutiérrez Pérez, R. Palomino Merino, M. Chávez Portillo, M.N. Márquez Specia, M. Hernández Hernández, S. Solis Sauceda, E. Rubio Rosas, Growth of Sm(OH)3 nanocrystals by chemical bath deposition and its thermal annealing treatment to Sm2O3, Optik 135 (2017) 70-78, http://dx.doi.org/10.1016/j.ijleo.2017.01.077
O. Portillo Moreno, R. Gutiérrez Pérez, R. Palomino Merino, M. Chávez Portillo, G. Hernández Téllez, E. Rubio Rosas, M. Zamora Tototzintle, CeO2 nanoparticles growth by chemical bath and its thermal annealing treatment in air atmosphere, Optik 148 (2017) 142-150, http://dx.doi.org/10.1016/j.ijleo.2017.08.133
L. Serrano de la Rosa, M. Chávez Portillo, M.A. Mora-Ramírez, V. Carranza Téllez, M. Pacio Castillo, H. Juárez Santiesteban, A. Cortés Santiago, O. Portillo Moreno, Synthesis of holmium oxide (Ho2O3) nanocrystal by chemical bath deposition, Optik 216 (2020) 1-9, https://doi.org/10.1016/j.ijleo.2020.164875
R. Occhipintia, and W.F. Boron, Mathematical modeling of acid-base physiology, Prog. Biophys. Mol. Biol. 117(1) (2015) 43-58, doi:10.1016/j.pbiomolbio.2015.01.003]
M.A. Mora-Ramírez, M. Chávez Portillo, A. Reyes Díaz, O. Portillo Moreno, Synthesis, characterization and optical properties of Co2+ doped PbS nanocrystals, Optik 238 (2021) 166629-1-12, https://doi.org/10.1016/j.ijleo.2021.166629
W. Zhou, Reversed Crystal Growth, Crystals 9 (2019) 7-1-16 doi:10.3390/cryst9010007
A.H. Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M.F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M.H. Stewart, I.L. Medintz, E. Stratakis, W.J. Parak, and A.G. Kanara, The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles, Chem. Rev. 119 (2019) 4819-4880, DOI: 10.1021/acs.chemrev.8b00733
G. Meinrath and H. Takeishi, Solid-liquid equilibria of Nd3+ in carbonate solutions, J. of Alloys and Compounds, 194 (1993) 93-99, DOI:10.1016/0925-8388(93)90651-3
K.N. Han, Effect of anions on the The Gibbs standard free energy solubility of rare earth element-bearing minerals in acids. Mining, Metallurgy & Exploration 1 (2018) 1-11, https://doi.org/10.1007/s42461-018-0029-3
Y. Xia, Y. Xiong, S.E. Skrabalak, Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. Engl. 48(1) (2009) 60-103, doi:10.1002/anie.200802248.
V. Schmitt, S.Arditty, F.L. Calderon, Chapter 15-Stability of concentrated emulsions, Interf. Sci. and Tech., 4 (2004) 607-639, https://doi.org/10.1016/S1573-4285(04)80017-6
M.R. Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Novrouzi, F. Faridbod, M.S. Karimi. Preparation of dysprosium carbonate and dysprosium oxide efficient photocatalyst nanoparticles through direct carbonation and precursor thermal decomposition, J. Mater. Sci. Mater. Electron., 28 (2017) 3325-3336, DOI 10.1007/s10854-016-5926-y
W. Tian, W. Li, W. Yu and X. Liu, A Review on Lattice Defects in Graphene: Types, Generation, Effects and Regulation, Micromachines 8 (2017) 163-1-15, doi:10.3390/mi8050163
D. Gutiérrez-Argüelles, M. Chávez Portillo, O. Portillo-Moreno, R. Palomino-Merino, M.A. Mora-Ramírez, E. Rubio-Rosas, G. Hernández-Téllez, R. Gutiérrez-Pérez, Maxwell-Boltzmann statistics applied in the study of photoluminescent emission bands in the (S)-(-)-1-(4-bromophenyl)-N-1,2,3,4-(tetrahydro-1-naphthyl)methanimine organic crystals, Opt. Mater. 96 (2019) 109307-1-9, https://doi.org/10.1016/j.optmat.2019.109307
M. Chávez Portillo, O. Portillo Moreno, M.A. Mora-Ramírez, H. Juárez Santiesteban, C. Bueno Avendaño, Y. Panecatl Bernal, Optical and structural analysis of the charge transfer of Ce3+ + e-→Ce4+ ion in the cerium oxide (CeO2), Optik 248 (2021) 168178-1-10, https://doi.org/10.1016/j.ijleo.2021.168178
I. Galanakis, N. Papanikolaou, P.H. Dederichs, Applicability of the broken-bond rule to the surface energy of the fcc metals, Surf. Sci., 511 (1-3) (2002) 1-12, https://doi.org/10.1016/S0039-6028(02)01547-9
N. Casati, A. Kleppe, A.P. Jephcoat & P. Macchi, Putting pressure on aromaticity along with in situ experimental electron density of a molecular crystal, Nature Comm., 7 (2016) 10901-1-8, DOI: 10.1038/ncomms10901.
R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson & S.P. Ong, Data Descriptor: Surface energies of elemental crystals, Sci. Data, 1 (2016) 160080-1-3, DOI: 10.1038/sdata.2016.80
M.S. Niasari, J. Javidi, F. Davar, A.A. Fazl, Sonochemical synthesis of Dy2(CO3)3 nanoparticles and their conversion to Dy2O3 and Effects of synthesis parameters, J. of Alloys and Compounds 503 (2010) 500-506, doi:10.1016/j.jallcom.2010.05.041
P. Zhang, T. Wu and K. Huang,, Identification of Active Surface Species in Molten Carbonates Using in situ Raman Spectroscopy, Front. Energy Res. 9 (2021) 653527-1-7, doi: 10.3389/fenrg.2021.653527
R.P. Turcotte, J.O. Sawyer and L. Eyring, Rare earth dioxymonocarbonates and their decomposition, Inorg. Chem. 8(2) 1969) 238-246, https://doi.org/10.1021/ic50072a012
E. Maslowsky, Jr., Vibrational spectra of intra-and inter-metal and semimetal bonds, Chem. Rev. 71(5) (1971) 507-524, https://doi.org/10.1021/cr60273a004
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry; 6th ed.; Wiley-Interscience: New York, 2009.
M. Chandrasekhar, D.V. Sunitha, N. Dhananjaya, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, Structural and phase dependent thermo and photoluminescent properties of Dy(OH)3 and Dy2O3 nanorods, Mater. Res. Bull. 47 (2012) 2085-2094, https://doi.org/10.1016/j.materresbull.2012.03.043
K. Gopinath, et. al., One-Pot Synthesis of Dysprosium Oxide Nano-Sheets: Antimicrobial Potential and Cyotoxicity on A549 Lung Cancer Cells, J. Clust. Sci., 28 (2017) 621-635 DOI 10.1007/s10876-016-1150-4
N.D. Sharma, J. Singh, S. Dogra, D. Varandani, H.K. Poswal, S.M. Sharma, A.K. Bandyopadhyay, Pressure-induced anomalous phase transformation in nano-crystalline dysprosium sesquioxide, Raman spectroscopy, 42(3) (2011) 438-444, https://doi.org/10.1002/jrs.2720
N.D. Sharma, J. Singh, A. Vijay, K. Samanta, S. Dogra and A.K. Bandyopadhyay. J. Phys. Chem., C 120(21) (2016) 11679-11689, https://doi.org/10.1021/acs.jpcc.6b02104
Y. Jinqiu, C. Lei, H. Huaqiang, Raman spectra of RE2O3 (RE = Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis, J. of rare earths 32 (2014) 1-4, https://doi.org/10.1016/S1002-0721(14)60025-9
R. Khokhra, B. Bharti, H.N. Lee & R. Kumar, Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method, Sci. Rep. 7 (2017) 15032-1-14, DOI:10.1038/s41598-017-15125-x]
N. Mugambi, M. Munji, R. Musembi, J. Gitonga, G. Gitonga, Optical Characterization of SnxSey: SnO2-Ni Prepared by Spray Pyrolysis for Photovoltaic Application, Am. J. of Mater. Sci., 7(6) (2017) 240-249, doi:10.5923/j.materials.20170706.03
S.H. Jaafar, M.H.M. Zaid, K.A. Matori, S.H.A. Aziz, H.M. Kamari, S. Honda and Y. Iwamoto, Influence of Calcination Temperature on Crystal Growth and Optical Characteristics of Eu3+ Doped ZnO/Zn2SiO4 Composites Fabricated via Simple Thermal Treatment Method, Crystals 11 (2021) 115-1-16, https://doi.org/10.3390/cryst11020115
A. Ichoja, S. Hashim, S. Ghoshal, I.H. Hashim, R. Omar, Physical, structural and optical studies on magnesium borate glasses doped with dysprosium ion. J. of Rare Earths 36 (2018) 1264-1271, https://doi.org/10.1016/j.jre.2018.05.013
D.J. Jovanovic, A. Chiappini, L. Zur, T.V. Gavrilovic, T.N.L. Tran, A. Chiasera, A. Lukowiak, K. Smits, M.D. Dramicanin, M. Ferrari, Synthesis, structure and spectroscopic properties of luminescent GdVO4:Dy3+ and DyVO4 particles, Opt. Mater. 76 (2018) 308-316, https://doi.org/10.1016/j.optmat.2017.12.046 0925-346
O. Aljewaw, M.K.A. Karim, H.M. Kamari, M.H.M. Zaid, N.M. Noor, I.N.C. Isa and M.H.A. Mhareb, Impact of Dy2O3 Substitution on the Physical, Structural and Optical Properties of Lithium-Aluminium-Borate Glass System, Appl. Sci. 10 (2020) 8183-1-17, doi:10.3390/app10228183
A.R. Shafiqa, A.A. Aziz and B. Mehrdel, Nanoparticle Optical Properties: Size Dependence of a Single Gold Spherical Nanoparticle, IOP Conf. Series: J. of Phys. Conf. Series 1083 (2018) 012040-1-6, doi:10.1088/1742-6596/1083/1/012040
A.M. Babu, B. Jamalaiah, J.S. Kumar, T. Sasikala, L.R Moorthy, Spectroscopic and photoluminescence properties of Dy3+-doped lead tungsten tellurite glasses for laser materials. J. Alloys Compd. 509 (2011) 457-462, https://doi.org/10.1016/j.jallcom.2010.09.058
M. Mhareb, S. Hashim, S. Ghoshal, Y. Alajerami, M.J. Bqoor, A.I. Hamdan, M.A. Saleh, M.K.K Karim, Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass. J. Lumin. 177 (2016) 366-372, https://doi.org/10.1007/s12633-018-0004-0
N. Deopa, A. Rao, Photoluminescence and energy transfer studies of Dy3+ ions doped lithium lead alumino borate glasses for w-LED and laser applications. J. Lumin. 192 (2017) 832-841, https://doi.org/10.1016/j.jlumin.2017.07.052
M.Chandrasekhar, H. Nagabhushana, K.H. Sudheerkumar, N. Dhananjaya. S.C. Sharma, D.Kavyashree, C. Shivakumara, B.M. Nagabhushana, Comparison of structural and luminescence properties of Dy2O3 nanopowders synthesized by co-precipitation and green combustion routes, Mater. Res. Bull., 55 (2014) 237-245, https://doi.org/10.1016/j.materresbull.2014.04.013
N. Arleth, M.T. Gamer, R. Köppe, S.N. Konchenko, M. Fleischmann, M. Scheer, P.W. Roesky, Molecular Polyarsenides of the Rare-Earth Elements, Agewandte, 55(4) (2016) 1557-1560, https://doi.org/10.1002/anie.201509749
G. Ahuja, G. Arora, Study of Electronic Properties of Dy2O3 using First Principles Calculations, International J. of Pure and Appl. Phys. 13(1) (2017), 123-126, http://www.ripublication.com
F.C. Chiu, Electrical characterization and current transportation in metal Dy2O3/SiDy2O3 structure, J. of Phys. 102 (2007) 044116, https://doi.org/10.1063/1.2767380
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Oscar Portillo, M. Chavez Portillo, H. Juarez Santiesteban, L. Serrano de La Rosa, J. Alvarado Pulido, Y. Ramos Reynoso
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.