Applications of the complex, double and dual numbers in Lagrangian mechanics
DOI:
https://doi.org/10.31349/RevMexFis.69.010702Keywords:
Variational symmetries, Hypercomplex numbers, Non-standard LagrangiansAbstract
It is shown that in some examples of classical mechanics, the complex, double and dual numbers are useful in the search of symmetries of the equations of motion. As a byproduct, we obtain non-standard Lagrangians for the systems under consideration.
References
V.K. Kisil, Geometry of Möbius Transformations, Elliptic, Parabolic and Hyperbolic Actions of SL2(R) (Imperial College Press, London, 2012), chap. 3, https://doi.org/10.1142/p835.
G.F. Torres del Castillo, Some applications in classical mechanics of the double and the dual numbers, Rev. Mex. Fıs. E 65 (2019) 152, https://doi.org/10.31349/RevMexFisE.65.152.
G.F. Torres del Castillo, Applications of the double and the dual numbers. The Bianchi models, Rev. Mex. Fıs. E 17 (2020) 146, https://doi.org/10.31349/RevMexFisE.17.146.
G.F. Torres del Castillo and K.C. Gutiérrez-Herrera, Double and dual numbers. SU(2) groups, two-component spinors and generating functions, Rev. Mex. Fıs. 66 (2020) 418, https://doi.org/10.31349/RevMexFis.66.418.
G.F. Torres del Castillo, Differentiable Manifolds: A Theoretical Physics Approach, 2nd ed. (Birkhäuser, New York, 2020), https://doi.org/10.1007/978-3-030-45193-6.
A. Crumeyrolle, Variétés différentiables à coordonnées hypercomplexes. Application à une géométrisation et à une généralisation de la théorie d’Einstein–Schrödinger, Ann. Fac. Sci. Toulouse 26 (1962) 105, https://doi.org/10. 5802/afst.505.
A. Crumeyrolle, Construction d’une nouvelle théorie unitaire en mécanique relativiste. Théorie unitaire hypercomplexe ou complexe hyperbolique, Ann. Fac. Sci. Toulouse 29 (1965) 53, https://doi.org/10.5802/afst.518.
P.F. Kelly and R.B. Mann, Ghost properties of algebraically extended theories of gravitation, Class. Quantum Grav. 3 (1986) 705, https://doi.org/10.1088/0264-9381/3/4/023.
F.P. Schuller, Born–Infeld Kinematics, Ann. Phys. 299 (2002) 174, https://doi.org/10.1006/aphy.2002.6273.
P.O. Hess, M. Schäfer and W. Greiner, Pseudo-Complex General Relativity (Springer, Cham, 2016), chaps. 1, 7, https://doi.org/10.1007/978-3-319-25061-8.
H. Stephani, Differential Equations: Their Solution Using Symmetries (Cambridge University Press, Cambridge, 1989), https://doi.org/10.1017/CBO9780511599941.
P.E. Hydon, Symmetry Methods for Differential Equations (Cambridge University Press, Cambridge, 2000), https://doi.org/10.1017/CBO9780511623967.
G.F. Torres del Castillo, C. Andrade Mirón, and R.I. Bravo Rojas, Variational symmetries of Lagrangians, Rev. Mex. Fıs. E 59 (2013) 140.
G.F. Torres del Castillo, An Introduction to Hamiltonian Mechanics (Springer, Cham, 2018), https://doi.org/10.1007/978-3-319-95225-3.
G.F. Torres del Castillo and A. Moreno-Ruiz, Symmetries of the equations of motion that are not shared by the Lagrangian, arXiv:1705.08446[physics.class-ph]
E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed. (Cambridge University Press, Cambridge, 1993). Chap. X, https://doi.org/10.1017/CBO9780511608797
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gerardo Francisco Torres del Castillo, Luis Ángel Capulín Tlaltecatl
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.