An Einstein-Maxwell interior solution obeying Karmarkar condition


  • Gabino Estevez-Delgado Facultad de Químico Farmacobiología de la Universidad Michoacana de San Nicolás de Hidalgo
  • Joaquin Estevez Delgado Universidad Michoacana de San Nicolás de Hidalgo.
  • Arthur Cleary-Balderas Facultad de Ingeniería Eléctrica de la Universidad Michoacana de San Nicolás de Hidalgo
  • Modesto Pineda Duran Instituto Tecnologico Superior de Tacámbaro



Einstein - Maxwell, Stars solutions, Karmarkar condition.


For the Einstein-Maxwell equation system, with perfect fluid in a static and spherically symmetrical spacetime, we report an analytical internal solution which is obtained by imposing the Karmarkar condition, the behaviour of the solution is such that the density and pressures are monotonically decreasing functions while the electric field function is a monotonically increasing function that is adequate to represent compact objects. In particular we have these characteristics for the observational values of mass (1.29 ± 0.05) M and radius (8.831 ± 0.09) km of the star SMC X-4. We will analyze the two extremes the one of minimum compactness umin = 0.20523 (M = 1.24 M, R = 8.921 km) and the one of maximum compactness umax = 0.22635 (M = 1.34 M, R = 8.741 km), resulting that the electric charge Qumin ∈ [1.5279, 1.8498]1020C and Qumax ∈ [1.6899, 1.9986]1020C respectively, implying that the case with higher compactness has a higher electric charge. Also in a graphic manner, it is shown that the causality condition is satisfied and that the solution is stable against infinitesimal radial adiabatic perturbation and also in regards to the Harrison-Novikov-Zeldovich criteria


H. Heintzmann, New exact static solutions of Einstein field equations, Z. Phys. 228 (1969) 489,

R. J. Adler, A fluid sphere in general relativity, J. Math. Phys. 15 (1974) 727,

M. C. Durgapal, A class of new exact solutions in general relativity, J. Phys. A 15 (1982) 2637,

P. C. Vaidya and R. Tikekar, Exact relativistic model for a superdense star. J Astrophys Astron 3 (1982) 325,

G. Estevez-Delgado, et al., A perfect fluid model for neutron stars, Mod. Phys. Lett. A 33 (2018) 1850237,

G. Estevez-Delgado et al., A regular perfect fluid model for dense stars, Mod. Phys. Lett. A 34 (2019) 1950115,

G. Estevez-Delgado et al., A perfect fluid model for compact stars, Can. J. Phys. 97 (2019) 988,

G Estevez-Delgado et al., A model for low mass compact objects, Rev. Mex. Fis. 65 (2019) 392,

J. Estevez-Delgado et al., An interior solution with perfect fluid, Mod. Phys. Lett. A 35 (2020) 2050141,

J. Estevez-Delgado et al., A uniparametric perfect fluid solution to represent compact stars, Mod. Phys. Lett. A 36 (2021) 2150068,

G. P. Whitman and R. C. Burch, Charged spheres in general relativity, Phys. Rev. D 24 (1981) 2049 Erratum, Phys. Rev. D 25 (1982) 1744,

N. Pant, New class of Well behaved exact solutions of relativistic charged white-dwarf star with perfect fluid, Astrophys Space Sci 334 (2011) 267,

S. K. Maurya and Y. K. Gupta, Well Behaved Charged Generalization of Buchdahl’s Fluid Spheres. Int. J. Theor. Phys. 51 (2012) 3478.

N. Pant and P. S. Negi, Variety of well behaved exact solutions of Einstein-Maxwell field equations: an application to Strange Quark stars, Neutron stars and Pulsars, Astrophys Space Sci 338 (2012) 163,

J. Estevez-Delgado et al., A charged perfect fluid solution, Mod. Phys. Lett. A 35 (2020) 2050120,

J. Estevez-Delgado et al., Compact stars described by a charged model, Int. J of Mod Phys D 29 (2020) 2050022,

J. Estevez-Delgado et al., Anisotropic analytical model for charged stars, Mod. Physics Letters A 36 (2021) 2150089,

R. L. Bowers and E.P.T. Liang, Anisotropic Spheres in General Relativity Astrophys. J. 188 (1974) 657,

K. Dev and M. Gleiser, Anisotropic Stars: Exact Solutions. Gen. Rel. and Grav. 34 (2002) 1793,

G. Estevez - Delgado and J. Estevez - Delgado Modern Physics Letters 33 (2018) 1850081,

J. Estevez - Delgado et al., A possible representation for the neutron star PSR J0437-4715. Eur. Phys. J. Plus 134 (2019) 600.

J. Estevez - Delgado et al., An anisotropic model for represent compact stars, Modern Physics Letters A 35 (2020) 2050132,

J. Estevez-Delgado et al., An anisotropic model for stars, Mod. Phys. Lett. A 35 (2020) 2050133,

J Estevez-Delgado et al., A generalized anisotropic model for super dense stars Mod. Phys. Lett. A 36 (2021) 2150070,

P. Boonserm, M. Visser and S. Weinfurtner, Generating perfect fluid spheres in general relativity, Phys. Rev. D 71 (2005) 124037,

P. Boonserm, M. Visser and S.Weinfurtner, Solution generating theorems for the Tolman-Oppenheimer-Volkov equation, Phys. Rev. D 76 (2007) 044024,

S. K. Maurya, Y. K. Gupta, S. Ray, S. R. Chowdhury, Spherically symmetric charged compact stars, Eur. Phys. J. C 75, (2015) 389.

K. N. Singh, N. Pant and N. Pradhan, Charged anisotropic Buchdahl solution as an embedding class I spacetime, Astrophys. Space Sci. 361 (2016) 173.

S. K. Maurya and S. D. Maharaj, Anisotropic fluid spheres of embedding class one using Karmarkar condition, Eur. Phys. J. C 77 (2017) 328.

S. K. Maurya et al., Compact stars with specific mass function, Ann. Phys. 385 (2017) 532 .

K. N. Pant, K. N. Singh and N. Pradhan, A hybrid space-time of Schwarzschild interior and Vaidya-Tikekar solution as an embedding class I, Indian J. Phys. 91 (2017) 343.

K. N. Singh, N. Pradhan and N. Pant, N. New interior solution describing relativistic fluid sphere, PramanaJ. Phys. 89 (2017) 23.

P. Bhar et al., A comparative study on generalized model of anisotropic compact star satisfying the Karmarkar condition, Eur. Phys. J. C 77 (2017) 596,

M. H. Murad, Some families of relativistic anisotropic compact stellar models embedded in pseudo-Euclidean space E5, Eur. Phys. J. C 78 (2018) 285,

N. Sarkar et al., Compact star models in class I spacetime, Eur. Phys. J. C 79 (2019) 516,

F. Tello-Ortiz et al., Anisotropic relativistic fluid spheres: an embedding class I approach, Eur. Phys. J. C 79 (2019) 885,

K. N. Singh et al., A generalized Finch-Skea class one static solution, Eur. Phys. J. C 79 (2019) 381,

R. Tamta and P. Fuloria, Analysis of physically realizable stellar models in embedded class one spacetime manifold, Mod. Phys. Lett. A 35 (2020) 2050001,

A. S. Eddington Kasner, The Mathematical Theory of Relativity Cambridge University Press, Cambridge, (1924)

E. Kasner, Finite representation of the solar gravitational field in flat space of six dimensions, Am. J. Math. 43 (1921) 130.

Y. K. Gupta and M. P. Goyel, Class two analogues of TY Thomas’s theorem and different types of embeddings of static spherically symmetric space-times, Gen. Relativ. Gravit., 6 (1975) 499,

H. P. Robertson, Relativistic Cosmology, Rev. Mod. Phys. 5 (1933) 62

M. Kohler and K. L. Chao, Zentralsymmetrische statische Schwerefelder mit Räumen der Klasse 1, Naturforsch. A, 20 (1965) 1537,

M. Govender et al., Dissipative collapse of a Karmarkar star, Mod. Phys. Lett. A 35 (2020) 2050164,

S. Ghosh et al., Gravastars in (3+1) dimensions admitting Karmarkar condition, Ann. Phys. 411 (2019) 167968,

P. K. F. Kuhfittig, Spherically symmetric wormholes of embedding class one. Pramana-J Phys 92 (2019) 75,

N. Sarkar et al., Int. J of Mod Phys 36 (2021) 2150015, Wormhole solutions in embedding class 1 space-time,

K. F. K. Peter, Two diverse models of embedding class one Annals of Physics 392 (2018) 63,

D. Deb et al., Exploring physical features of anisotropic strange stars beyond standard maximum mass limit in f(R, T) gravity Mon. Not. R. Astr. Soc. 485 (2019) 5652

S. K. Maurya et al., Study of anisotropic strange stars in f(R, T) gravity: An embedding approach under the simplest linear functional of the matter-geometry coupling Phys. Rev. D 100 (2019) 044014,

Ksh. N. Singhet, A Errehymy, F Rahaman, M Daoud Exploring physical properties of compact stars in f(R, T)- gravity: An embedding approach,

G. Mustafa et al., Realistic stellar anisotropic model satisfying Karmarker condition in f(R, T)- gravity, Eur. Phys. J. C 80 (2020) 26,

D. Deb et al., Anisotropic compact stars in f(T) gravity under Karmarkar condition,

H.A. Buchdahl, General relativisitc fluid spheres, Physical Review. 116 (1959) 1027,

M. K. Mak, P. N. J. Dobson and T. Harko, Maximum massradius ratios for charged compact general relativistic objects, Europhys. Lett. 55 (2001) 310.

S. Ray et al., Electrically charged compact stars and formation of charged black holes, Phys. Rev. D 68 (2003) 084004,

B.W. Bonnor, The mass of a static charged sphere, Z. Phys. 160 (1960) 59,

S. Rosseland, Electrical State of a Star, Mon. Not. R. Astron. Soc. 84 (1924) 720,

J. D. Bekenstein, Hydrostatic Equilibrium and Gravitational Collapse of Relativistic Charged Fluid Balls, Phys. Rev. D 4 (1971) 2185,

P. S. Florides, The complete field of charged perfect fluid spheres and of other static spherically symmetric charged distributions, J. Phys. A: Math. Gen. 16 (1983) 1419,

J. Ponce de Leon, Limiting configurations allowed by the energy conditions, Gen. Relat. Gravit. 25 (1993) 1123,

S. Ray et al., Electrically charged compact stars and formation of charged black holes, Phys. Rev. D 68 (2003) 084004,

C. G. Böhmer and T. Harko, Minimum mass-radius ratio for charged gravitational objects, Gen. Relativ. Gravit. 39 (2007) 757.

A. Giuliani and T. Rothman, Absolute stability limit for relativistic charged spheres, Gen. Relativ. Gravit. 40 (2008) 1427.

H. Andreasson, Sharp Bounds on the Critical Stability Radius for Relativistic Charged Spheres, Commun. Math. Phys. 288 (2009) 715,

M. Ilyas, Charged compact stars in f(G) gravity, Eur. Phys. J. C 78 (2018) 757.

P. M. Takisa, S. D. Maharaj and L. L. Leeuw, Effect of electric charge on conformal compact stars, Eur. Phys. J. C 79 (2019) 8.

J. Kumar et al., Relativistic charged spheres: Compact stars, compactness and stable configurations, JCAP 005 (2019) 11,

G. Estevez-Delgado et al., A charged perfect fluid model with high compactness, Rev. Mex. Fıs 65 (2019) 382,

In preparation, Description of the interior of the Neutron Star in EXO 1785-248 by mean of the Karmarkar condition (2022)

D. D. Dionysiou, Equilibrium of a static charged perfect fluid sphere Astrophys. Space Sci. 85 331 (1982),

J. Eiesland, The group of motions of an Einstein space, Trans. Am. Math. Soc. 27 (1925) 213,

L. P. Eisenhart, Riemannian Geometry. Princeton University Press, Princeton, (1966)

K. R. Karmarkar, Gravitational metrics of spherical symmetry and class one, Proc. Indian A cad. Sci. A 27 (1948) 56,

N. S. Pandey and S. P. Sharma, Insufficiency of Karmarkar’s condition, Gen. Relativ. Gravit. 14 (1982) 113,

W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44 (1966) 1,

M. S. R. Delgaty and K. Lake, Comput. Phys. Commun. 115 (1998) 395, Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations,

G. Estevez-Delgado and J. Estevez-Delgado, On the effect of anisotropy on stellar models, Eur. Phys. J. C 78 (2018) 673.

B. K. Harrison et al., Gravitational Theory and Gravitational Collapse, (University of Chicago Press, Chicago, 1965)

Y. B. Zeldovich and I. D. Novikov, Relativistic Astrophysics, vol. 1: Stars and Relativity, (University of Chicago Press, Chicago (1971)) pp 288-291

R. C. Tolman, Static Solutions of Einstein’s Field Equations for Spheres of Fluid, Phys. Rev. 55 (1939) 364,

J. R. Oppenheimer and G. M. Volkoff, On Massive Neutron Cores, Phys. Rev. 55 (1939) 374,




How to Cite

G. . Estevez-Delgado, J. Estevez Delgado, A. Cleary-Balderas, and M. . Pineda Duran, “An Einstein-Maxwell interior solution obeying Karmarkar condition”, Rev. Mex. Fís., vol. 70, no. 3 May-Jun, pp. 030702 1–, Jan. 2024.



07 Gravitation, Mathematical Physics and Field Theory