Improved electrical characteristics of AlxGa1−xN/GaN High Electron Mobility Transistor by effect of physical and geometrical parameters

Authors

  • Abdelmalek Douara Tissemsilt University
  • Abdelaziz Rabehi Djelfa University of Algeria
  • Oussama Baitiche Ammar Thlidji University of Laghouat
  • M. Handami Tissemsilt University

DOI:

https://doi.org/10.31349/RevMexFis.69.041001

Keywords:

HEMTs, AlxGa1-x N/GaN, buffer layer, GaN

Abstract

This research aims to study the impact of some physical and structural parameters on the I–V characteristics of a high electron mobility transistors (HEMTs) based on AlxGa1-x N/GaN, we investigate the effect of the GaN buffer layer thickness and the impact of other properties of the materials such as aluminum mole fraction and doping concentration, the Al0.2Ga0.8 N/GaN heterostructures with 400 nm of buffer layer and a layer doped with  n = 4 x 1018 cm-3 , for this structure we find the maximum saturation current of 420 mA/mm . The proposed model included GaN buffer layer and Al content were derived from our developed I-V characteristics. The proposed model is in excellent agreement with the simulated I-V characteristics and experimental results.

References

Lee, H. P., Perozek, J., Rosario, L. D., & Bayram, C. (2016). Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations. Scientific reports, 6(1), 1-10.

A. Douara, B. Djellouli, H. Abid, A. Rabehi, A. Ziane et Al , “ Optimization of two‐dimensional electron gas characteristics of AlGaN/GaN high electron mobility transistors” , Int J Numer Model. 2018;e2518. https://doi.org/10.1002/jnm.2518.

Acharya, A. R. (2014). Group III–nitride semiconductors: preeminent materials for modern electronic and optoelectronic applications. Himalayan Physics, 5, 22-26.

Huang, J. J., Kuo, H. C., & Shen, S. C. (2017). Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications. Woodhead Publishing.

Rabehi, A., Amrani, M., Benamara, Z., Akkal, B., Hatem-Kacha, A., Robert-Goumet, C., ... & Gruzza, B. (2015). Study of the characteristics current-voltage and capacitance-voltage in nitride GaAs Schottky diode. The European Physical Journal Applied Physics, 72(1), 10102.‏

Rabehi, A., Amrani, M., Benamara, Z., Akkal, B., & Kacha, A. H. (2016). Electrical and photoelectrical characteristics of Au/GaN/GaAs Schottky diode. Optik, 127(16), 6412-6418.

Rabehi, A., Amrani, M., Benamara, Z., Akkal, B., Ziane, A., Guermoui, M., ... & Robert-Goumet, C. (2018). Simulation and experimental studies of illumination effects on the current transport of nitridated GaAs Schottky diode. Semiconductors, 52(16), 1998-2006.‏

Bahat-Treidel, E., Hilt, O., Brunner, F., Sidorov, V., Würfl, J., & Tränkle, G. (2010). AlGaN/GaN/AlGaN DH-HEMTs breakdown voltage enhancement using multiple grating field plates (MGFPs). IEEE Transactions on Electron Devices, 57(6), 1208-1216.

Mohanbabu, A., Anbuselvan, N., Mohankumar, N., Godwinraj, D., & Sarkar, C. K. (2014). Modeling of sheet carrier density and microwave frequency characteristics in Spacer based AlGaN/AlN/GaN HEMT devices. Solid-State Electronics, 91, 44-52.

Biswas, K., Ghoshhajra, R., & Sarkar, A. (2023). High Electron Mobility Transistor: Physics-Based TCAD Simulation and Performance Analysis. In HEMT Technology and Applications (pp. 155-179). Springer, Singapore.

Khandelwal, S., Goyal, N., & Fjeldly, T. A. (2011). A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices. IEEE Transactions on Electron Devices, 58(10), 3622-3625.

Douara, A, B. Djellouli, A. Rabehi, A. Ziane, and N. Belkadi. 2014. “ I-V Characteristics Model for AlGaN/GaN HEMTs Using Tcad-Silvaco.” Journal of New

Technology and Materials 277 (1748): 1–6.

Helal, H., Benamara, Z., Kacha, A. H., Amrani, M., Rabehi, A., Akkal, B., ... & Robert-Goumet, C. (2019). Comparative study of ionic bombardment and heat treatment on the electrical behavior of Au/GaN/n-GaAs Schottky diodes. Superlattices and Microstructures, 135, 106276.‏

Rabehi, A., Nail, B., Helal, H., Douara, A., Ziane, A., Amrani, M., ... & Benamara, Z. (2020). Optimal estimation of Schottky diode parameters using a novel optimization algorithm: Equilibrium optimizer. Superlattices and Microstructures, 146, 106665.‏

Rabehi, A., Nail, B., Helal, H., Douara, A., Ziane, A., Amrani, M., ... & Benamara, Z. (2020). Optimal Estimation of Schottky Diode Parameters Using Advanced Swarm Intelligence Algorithms. Semiconductors, 54(11), 1398-1405.‏

Yigletu, F. M., Khandelwal, S., Fjeldly, T. A., & Iniguez, B. (2013). Compact charge-based physical models for current and capacitances in AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 60(11), 3746-3752.

Kermas, N., Djellouli, B., Bouguenna, D., Eshetu, W., Moldovan, O., & Iñiguez, B.“Compact mole fraction-dependent modeling of I-V and C-V characteristics in AlxGa1−xN/GaN HEMTs”, Journal of Computational Electronics volume 17, pages 224–229 (2018)

Khan, M. A., Hu, X., Sumin, G., Lunev, A., Yang, J., Gaska, R., & Shur, M. S. (2000). AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor. IEEE Electron Device Letters, 21(2), 63-65.

Khandelwal, S., & Fjeldly, T. A. (2012). A physics based compact model of I–V and C–V characteristics in AlGaN/GaN HEMT devices. Solid-State Electronics, 76, 60-66.

Bernardini, F., & Fiorentini, V. (2001). Nonlinear macroscopic polarization in III-V nitride alloys. Physical Review B, 64(8), 085207.

Delagebeaudeuf, D., & Linh, N. T. (1982). Metal-(n) AlGaAs-GaAs two-dimensional electron gas FET. IEEE Transactions on Electron Devices, 29(6), 955-960.

A. Nigam et al., Effect of self-heating on electrical characteristics of AlGaN/GaN HEMT on Si (111) substrate, AIP Advances 7 (2017) 085015, https://doi.org/10.1063/1.4990868.

Downloads

Published

2023-07-04

How to Cite

[1]
A. . Douara, A. Rabehi, O. . Baitiche, and M. Handami, “Improved electrical characteristics of AlxGa1−xN/GaN High Electron Mobility Transistor by effect of physical and geometrical parameters”, Rev. Mex. Fís., vol. 69, no. 4 Jul-Aug, pp. 041001 1–, Jul. 2023.