Radial solution of Schrödinger equation with Hulthen-Yukawa-Inverse quadratic potential in a Point-Like defect under AB-flux field

Authors

  • Faizuddin Ahmed Maryam Ajmal Women's College of Science and Technology

DOI:

https://doi.org/10.31349/RevMexFis.69.030401

Keywords:

Topological defect; non-relativistic wave equation; solutions of wave equations: bound state; geometric quantum phase; special function; interaction potential

Abstract

In this paper, we determine the approximate eigenvalue solution of the non-relativistic wave equation in the presence of the Aharonov-Bohm flux field with Hulthen-Yukawa-Inverse Quadratic potential in a topological defect via point-like global monopole (PGM) geometry. We use the Greene-Aldrich improved approximation scheme into the centrifugal and reciprocal terms appear in the radial Schrödinger equation. We then solve this radial equation using the parametric Nikiforov-Uvarov method and analyze the effects on the eigenvalue solution. We see that the energy levels and the radial wave functions get modified by the topological defect of a point-like global monopole and the magnetic flux field that shows an analogue of the Aharonov-Bohm effect for the bound state. Finally, we utilize the eigenvalue solution to some potential models, such as Hulthen potential, Hulthen plus Yukawa potential, and Hulthen plus inverse quadratic potential and discuss the results.

References

W. Greiner and B. Muller, Quantum Mechanics: An Introduction, Springer, Berlin, Germany (1994).

L. D. Landau and E. M. Lifshitz, Quantum Mechanics: The Non-relativistic Theory, Pergamon, Oxford (1977).

H. Haken and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry: Introduction to Experiments and Theory, Springer-Verlag, Berlin, Germany (1995).

F. Constantinescu and E. Magyari, Probelms in Quantum Mechanics, Pergamon Press, Oxford (1971).

H. Yukawa, Proc. Phys. Math. Soc. Japan 17 (1935) 48.

R. Kumar and F. Chand, Commun. Theor. Phys. 59 (2013) 4.

C. A Onate and J. O. Ojonubah, J. Theor. Appl. Phys. 10 (2016) 21.

M. M. Sabet, Acta Phys. Pol. A 140 (2021) 97.

L. Hulthen, Ark. Mat. Astron. Fys. 28A (1942) 5; ibid 29B (1942) 1.

L. Hulthen, M. Sugawara and S. Flugge (ed.), Handbuch der Physik, Springer-Verlag, Berlin (1957).

D. Agboola, Phys. Scr. 80 (2009) 065304.

D. Agboola, Commun. Theor. Phys. 55 (2011) 972.

C. Y. Chen, Phys. Lett. A 339 (2005) 283.

A. de Souza Dutra and M. Hott, Phys. Lett. A 356 (2006) 215.

S. M. Ikhdair and R. Sever, J. Mol. Struct. (THEOCHEM) 809 (2007) 103.

N. Rosen and M. F. Manning, Phys. Rev. 42 (1932) 210.

M. F. Manning and N. Rosen, Phys. Rev. 44 (1933) 953.

Y. P. Varshni, Rev. Mod. Phys. 29 (1957) 664.

E. A. Hylleraas, J. Chem. Phys. 3 (1935) 595.

G. I. Wei, C. Y. Long, X. Y. Duan and S. H. Dong, Phys. Scr. 77 (2008) 035001.

G. F. Wei, S. H. Dong and V. B. Bezzera, Int. J. Mod. Phys. A 24 (2009) 161.

P. A. Morse, Phys. Rev. 34 (1929) 57.

M. S. Abdelmonem, A. Abdel-Hady and I. Nasser, Results Phys. 7 (2017) 1778.

C. Tezcan and R. Sever, J. Math. Chem. 42 (2007) 387.

K. J. Oyewumi and C. O. Akoshile, Eur. Phys. J. A 45 (2010) 311.

S. M. Ikhdair, J. Math. Phys. 51 (2010) 023525.

S. A. Najafizade, H. Hassanabadi and S. Zarrinkamar, Can. J. Phys. 94 (2016) 1085.

K. J. Oyewumi, Int. J. Theor. Phys. 49 (2010) 1302.

A. Kratzer, Z. Phys. 3 (1920) 289.

E. Fues, Ann. Phys. (Paris) 80 (1926) 281.

S. A. Najafizade, H. Hassanabadi and S. Zarrinkamar, Chin. Phys. B 25 (2016) 040301.

F. Ahmed, K. Ahmed, A. Ahmed, A. Islam and B. P. Barman, J. Theor. Appl. Phys. 16 (2022) 162233.

F. Ahmed, Int. J. Geom. Meths. Mod. Phys. (2022), https://doi.org/10.1142/S0219887823500111.

E. P. Inyang et al., Rev. Mex. Fis. 68 (2021) 020401.

A. F. Nikiforov and V. B. Uvarov, Special Function of Mathematical Physics, Birkhauser, Basel (1988).

M. de Montigny, H. Hassanabadi, J. Pinfold and S. Zare, Eur. Phys. J. Plus 136 (2021) 788.

M. de Montigny, J. Pinfold, S. Zare and H. Hassanabadi, Eur. Phys. J. Plus 137 (2022) 54.

F. Ahmed, Proc. R. Soc. A 478 (2022) 20220091.

F. Ahmed, Int. J. Geom. Meths. Mod. Phys. 19 (2022) 2250059.

F. Ahmed, Int. J. Geom. Meths. Mod. Phys. 19 (2022) 2250162.

E. R. B. de Mello, Braz. J. Phys. 31 (2001) 211.

A. L. C. de Oliveira and E. R. B. de Mello, Class. Quantum Grav. 23 (2006) 5249.

G. F. Torres del Castillo and L. C. Cortes-Cuautli, J. Math. Phys. 38 (1997) 2996.

A. Boumali and H. Aounallah, Adv. High Energy Phys. 2018 (2018) 1031763.

E. A. F. Braganca, R. L. L. Vitoria, H. Belich and E. R. B. de Mello, Eur. Phys. J. C 80 (2020) 206.

F. Ahmed, Sci. Rep. 12 (2022) 8794.

L. Cortes Cuautli, Rev. Mex. Fis. 43 (1996) 527.

A. L. C. de Oliveira and E. R. B. de Mello, Int. J. Mod. Phys. A 18 (2003) 2051.

C. Furtado and F. Moraes, J. Phys. A: Math. Gen. 33 (2000) 5513.

R. L. L. Vitoria and H. Belich, Phys. Scr. 94 (2019) 125301.

F. Ahmed, arXiv: 2209.13490 [quant-ph].

G. de A. Marques and V. B. Bezerra, Class. Quantum Gravit. 19 (2002) 985.

P. Nwabuzor et al., Entropy 23 (2021) 1060.

F. Ahmed, Mol. Phys. (2022) Article: e2124935, https://doi.org/10.1080/00268976.2022.2124935.

F. Ahmed, arXiv: 2210.04617 [hep-th].

F. Ahmed, Int. J. Geom. Meths. Mod. Phys. (2022), https://doi.org/10.1142/S0219887823500603.

Y. Aharonov and D. Bohm, Phys. Rev. 115 (1959) 485.

M. Peshkin and A. Tonomura, The Aharonov-Bohm Effect, Lecture Notes Phys. Vol. 340, Springer-Verlag, Berlin, Germany (1989).

R. L. Greene and C. Aldrich, Phys. Rev. A 14 (1976) 2363.

V. M. Vasyuta and V. M. Tkachuk, Eur. Phys. J. D 70 (2016) 267.

T. Tietz, J. Chem. Phys. 35 (1961) 1917.

C. S. Lam and Y. P. Varshni, Phys. Rev. A 4 (1971) 1875.

A. A. Berezin, Phys. Status. Solidi (b) 50 (1972) 71.

P. Pyykko and J. Jokisaari, Chem. Phys. 10 (1975) 293.

S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. A 21 (2006) 6465.

A. I. Ahmadov, S. M. Aslanova, M. Sh. Orujova and S. V. Badalov, Adv. High. Energy Phys. 2021 (2021) 8830063.

M. R. Setare and S. Haidari, Phys. Scr. 18 (2010) 065201.

M. Hamzavi, S. M. Ikhdair and B. I. Ita, Phys. Scr. 85 (2012) 045009.

S. M. Ikhdair, Cent. Eur. J. Phys. 10 (2012) 361.

O. Aydogdu and R. Sever, ˘ Phys. Scr. 84 (2011) 025005.

W. C. Qiang, K. Li and W. L. Chen, J. Phys. A: Math. Theor. 42 (2009) 205306.

I. B. Okon, O. Popoola and C. N. Isonguyo, Adv. High Energy Phys. 2017 (2017) 9671816.

C. Berkdemir, Chapter: Application of the Nikiforov-Uvarov Method in Quantum Mechanics in Theoretical Concepts of Quantum Mechanics, IntechOpen publisher, London (2012), pp. 225-252.

Downloads

Published

2023-05-01

How to Cite

[1]
F. Ahmed, “Radial solution of Schrödinger equation with Hulthen-Yukawa-Inverse quadratic potential in a Point-Like defect under AB-flux field”, Rev. Mex. Fís., vol. 69, no. 3 May-Jun, pp. 030401 1–, May 2023.

Issue

Section

04 Atomic and Molecular Physics