Standard molar enthalpies of formation of 3-methylglutaric and 3,3-dimethylglutaric anhydrides

Authors

DOI:

https://doi.org/10.31349/RevMexFis.69.051701

Keywords:

3-methylglutaric anhydride, 3,3-dimethylglutaric anhydride, enthalpy of formation, functional group-contribution methods

Abstract

In this research, both the standard molar enthalpy of formation in the crystalline phase and in the gas phase of 3-methylglutaric anhydride was calculated from experimental data. The temperature and enthalpy of fusion, as well as the molar heat capacity in solid phase was calculated by differential scanning calorimetry; the molar enthalpy of sublimation at 298.15 K by the Knudsen effusion method, the molar enthalpy of vaporization at 298.15 K by thermogravimetric analysis, and the standard massic combustion energy by combustion adiabatic calorimetry. Since 3,3-dimethylglutaric anhydride presented crystal transitions (with endothermic points at 352.76 K, 356.98 K and 397.15 K), some of its thermochemical properties were estimated from the functional group-contribution methods proposed by Benson, Gani and Naef and from application of Machine Learning based models.

References

V. S. Maria and B. Line, Cyclic anhydrides as powerful tools for bioconjugation and smart delivery, Bioconjugate Chem. 32 (2021) 482, https://dx.doi.org/10.1021/acs.bioconjchem.1c00023

J. C. Bardhan, R. N. Adhya and K. C. Bhattacharyya, Synthesis of polycyclic compounds. Part IV. Substituted 3-alkylphenanthrenes, J. Chem. Soc. (1956) 1346, https://doi.org/10.1039/JR9560001346

Y. Yamamoto, K. Yamamoto, T. Nishioka and J. Oda, Asymmetric synthesis of optically active lactones from cyclic acid anhydrides using lipase in organic solvents, Agr. Biol. Chem. 52 (2014) 3087, https://doi.org/10.1080/00021369.1988.10869185

R. C. Dale, Indoline compounds as granzyme b inhibitors. Patent No. US 10,329,324 B2; PCT Int. Appl. (2019)

T.Y. Wu, Y. R. Lai and S. W. Tsai, CALB-Catalyzed two-step alcoholytic desymmetrization of 3-methylglutaric diazolides in

MTBE, Appl. Biochem. Biotech. 185 (2018) 578, https://doi.org/10.1007/s12010-017-2675-1

J. H. Shim, S. J. Park, B. K. Ahn, J. Y. Lee, H. S. Kim and D.C. Ha, Enantioselective thiolysis and aminolysis of cyclic anhydrides using a chiral diamine-derived thiourea catalyst, ACSOmega 50 (2021) 34501, https://doi.org/10.1021/acsomega.1c04741

S. K. Gandhi, J. R. Schultz, F. W. Boughey and R. H. Forsythe, Chemical modification of egg white with 3,3-dimethylglutaric

anhydride, J. Food Sci. 33 (1968) 163.

E. Yuba, N. Tajima, Y. Yoshizaki, A. Harada, H. Hayashi and K. Kono, Dextran derivative-based pH-sensitive liposomes for cancer immunotherapy, Biomaterials 35 (2014) 3091, http://dx.doi.org/10.1016/j.biomaterials.2013.12.024

K. L. Kobrakov, V. K. Korolev, L. I. Rybina and V. I. Kelarev, Halogen-containing pyridines. 7. Synthesis and some conversions of (3,5-dichloro-2-pyridyl)hydrazine, Chem. Heterocycl. Com+ 36 (2000) 931, DOI: 10.1007/bf02256977

T. Trang, N. Nhung and T. Kobayashi, Fabrication and characterization of pulp/chitosan composite membranes crosslinked with 3-methylglutaric anhydride for pervaporation of ethanol/water mixture, Engineering-London 3 (2011) 110, DOI: 10.4236/eng.2011.32014

K. Salas-López, M. A. García-Castro, P. Amador, A. M. Herrera-González, A. Galicia-Aguilar, F. A. Amador, F. Hernández-Pascasio and H. Flores, Standard enthalpies of formation of N,N′ -(1,3-phenylene)bis(phthalimide) and N,N′ -(1,3-phenylene)bis(phthalimide-5-carboxilic acid), Thermochim. Acta. 697 (2021) 178861, https://doi.org/10.1016/j.tca.2021.178861

M. Caldera, M. A. García-Castro, J. García and A. M. Herrera, Comparison of polyampholyte derivative of chitosan with

bisphtalimides of low molecular weight in the green synthesis of Au nanoparticles, Gold Bull. 55 (2022) 41, https:

//doi.org/10.1007/s13404-022-00310-2

M. López-Badillo, M. A. García-Castro, J. A. GaliciaAguilar, R. J. Aranda, E. Galicia and M. A. Velasco, Experimental standard enthalpies of formation4,4-methylenedi(phenylene isocyanate) and polyamideimides, Russ. J. Phys. Chem. B, 15 (2021) S201,

https://doi.org/10.1134/S1990793121100067

M. López-Badillo, M. Velasco-Hernández, M. García-Castro, R. Aranda-García, J. Galicia-Aguilar, M. Guevara-Espinosa

and V. Carreón-Rodríguez, Obtaining kinetic parameters of polyamide imide reaction. Rev. Mex. Ing. Química, 19 (2019)

, https://doi.org/10.24275/rmiq/Cat606

Z. Xun, Z. Chengjian and Z. Xinghong, A facile and unprecedented route to a library of thermostable formaldehydederived polyesters: highly active and selective copolymerization of cyclic acetals and anhydrides, Angew. Chem-Ger Edit, 61 (2022), https://doi.org/10.1002/anie.202117316

S. R. Jezowski, S. Monaco, H. P. Yennawar, N. M. Wonderling, R. T. Mathersd and B. Schatschneider, Unusual physical

behaviour and polymorphic phase transitions in crystalline bicyclic anhydrides, Cryst. Eng. Comm. 19 (2017) 276, https:

//doi.org/10.1039/C6CE02036D

D. Zhao, F. F. Li and A. Y. Zhang, Naphthalene-1,8-dicarboxylic anhydride: a monoclinic polymorph, Acta Cryst. 66 (2010) o2622, https://doi.org/10.1107/S1600536810037608

G. Díaz, B. Ramírez V, W. Velásquez and P. Rodríguez, Anew polymorph of 9,10-dihydroanthracene-9,10-α,β-succinic

acid anhydride, Acta Cryst. 58 (2002), o501, https://doi.org/10.1107/S1600536802005767

M. Kuhnert-Brandstatter and H. W. Sollinger, Thermal analytical and infrared spectroscopic investigations on polymorphic organic compounds VIII, Mikrochim. Acta 102 (1990) 247,https://doi.org/10.1007/BF01244766

J. Pirsch, Polarity, molar heat of fusion, and melting-point position of organic compounds. Polymorphic transformations in the

melting point region and their heats of transformation, Monat.Chem. 86 (1955) 216.

M. R. Caira, Crystalline polymorphism of organic compounds,Topics in Current Chemistry 198 (1998) 163, DOI: 10.1007/3-

-69178-2_5.

L. Yu, G. A. Stephenson, C. A. Mitchell, C. A. Bunnell, S. V. Snorek, J. J. Bowyer, T. B. Borchardt, J. G. Stowell and S. R.

Byrn, hermochemistry and conformational polymorphism of a hexamorphic crystal system, J. Am. Chem. Soc. 122 (2000)

, https://doi.org/10.1021/ja9930622

E. Ahmed, D. P. Karothu, L. Pejov, P. Commins, Q. Hu and P. Naumov, From mechanical effects to mechanochemistry: Softening and depression of the melting point of deformed plastic crystal, J. Am. Chem. Soc. 142 (2020) 11219, https://dx.doi.org/10.1021/jacs.0c03990

K. Salas-López, P. Amador, A. Rojas, F. J. Melende, and H. Flores, Experimental and theoretical thermochemistry of the isomers 3- and 4-nitrophthalimide, J. Phys. Chem. A 121(2017) 5509, https://doi.org/10.1021/acs.jpca.7b02508 M. A. R. Matos, M. S. Miranda, D. A. P. Fonseca, V. M. F. Morais and J. F. Liebman, Calorimetric and Computational Thermochemical Study of 3,3-Tetramethyleneglutaric Acid, 3,3-Tetramethyleneglutaric Anhydride, and 3,3-Tetramethyleneglutarimide, J. Phys. Chem A 112 (2008) 10053, https://doi.org/10.1021/

jp805292x

R. Sabbah, X. Wu, J. S. Chickos, M. L. Planas Leitão, M. V. Roux and L. A. Torres, Reference materials for calorimetry and differential thermal analysis, Thermochim. Acta. 331 (1999) 93, https://doi.org/10.1016/S0040-6031(99)00009-X

C. Plato and A. R. Glasgow, Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity organic chemicals. Application to 95 compounds, J. Anal. Chem. 41 (1969) 330, https://doi.org/10.1021/ac60271a041

M. E. Brown, Determination of purity by differential scanning calorimetry (DSC), J. Chem. Educ. 56 (1979) 310, https://doi.org/10.1021/ed056p310

P. Góralski, M. Tkaczyk and M. Chorazewski, Heat capacities of α,ω-dichloroalkanes at temperatures from 284.15

K to 353.15 K and a group additivity analysis, J. Chem. Eng. Data. 48 (2003) 492, https://doi.org/10.1021/je020042y

J. Coops, R. S. Jessup, K. G. van Nes and F. D. Rossini, Experimental Thermochemistry, N. Y.: Interscience, (1956).

D. D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K. L. Churney and R.L. Nuttall, The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units, american chemical society and the american institute of physics for the national bureau of standards, Washington, D.C, (1982).

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, Atomic weights of the elements 2013 (IUPAC Technical Report), Pure Appl. Chem. 88 (2016) 265, https://doi.org/10.1515/pac-2015-0305

W. D. Good, and N. K. Smith, Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane, J. Chem. Eng. Data 14 (1969) 102, https://doi.org/10.1021/je60040a036

D. M. Price, Vapor pressure determination by thermogravimetry, Thermochim. Acta 367 (2001) 253, https://doi.org/10.1016/S0040-6031(00)00676-6

M.T. Vieyra-Eusebio and A. Rojas, Vapor Pressures and Sublimation Enthalpies of Nickelocene and Cobaltocene Measured

by Thermogravimetry, J. Chem. Eng. Data 56 (2011) 5008, https://doi.org/10.1021/je200815v

M. A. García-Castro, P. Amador, J. M. Hernández-Pérez, A. E. Medina-Favela and H. Flores, Experimental and computational

thermochemistry of 3- and 4-nitrophthalic anhydride, J. Phys. Chem. A 118 (2014) 3820, https://doi.org/10.1021/jp5003929

F. Ramos, J. M. Ledo, H. Flores, E. A. Camarillo, J. Carvente and M. P. Amador, Evaluation of sublimation enthalpy by thermogravimetry: Analysis of the diffusion effects in the case of methyl and phenyl substituted hydrantoins, Thermochim. Acta 655 (2017) 181, https://doi.org/10.1016/j.tca.2017.06.024

W. Acree and J. S. Chickos, Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2010, J. Phys. Chem. Ref. Data 45 (2016) 033101, https://doi.org/10.1063/1.4948363

A. Rojas and E. Orozco, Measurement of the enthalpies of vaporization and sublimation of solids aromatic hydrocarbons by differential scanning calorimetry, Thermochim. Acta 405 (2003) 93, https://doi.org/10.1016/S0040-6031(03)00139-4

R. Sabbah, A. Xu-wu, J. S. Chickos, M. L. Planas Leitão, M. V. Roux and L. A. Torres, Reference materials for calorimetry and differential thermal analysis, Thermochim. Acta 331 (1999) 93, https://doi.org/10.1016/S0040-6031(99)00009-X

A. Rojas and M. T. Vieyra-Eusebio, Enthalpies of sublimation of ferrocene and nickelocene measured by calorimetry and the

method of Langmuir, J. Chem. Thermodyn 43 (2011) 1738, https://doi.org/10.1016/j.jct.2011.06.001

R. S. Bradley and T. G. Cleasby, The vapour pressure and lattice energy of some aromatic ring compounds, J. Chem.Soc. 169 (1953) 1690, https://doi.org/10.1039/JR9530001690

C. G. De Kruif, Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons, J. Chem. Thermodyn. 12 (1980) 243, https://doi.org/10.1016/0021-9614(80)90042-7

L. Malaspina, R. Gigli and G. Bardi, Microcalorimetric determination of the enthalpy of sublimation of benzoic acid and

anthracene, J. Chem. Phys. 59 (1973) 387, https://doi.org/10.1063/1.1679817

P. C. Hansen and C. A. Eckert, An improved transpiration method for the measurement of very low vapor pressures, J. Chem. Eng. Data 31 (1986) 1, https://doi.org/10.1021/je00043a001

V. P. Klochkov, The vapor pressure of some aromatic compounds, Zh. Fiz. Khim 32 (1985) 1177. 47. K. V. Zherikova and S. P. Verevkin, Ferrocene: Temperatura adjustments of sublimation and vaporization enthalpies, Fluid Phase Equilib. 472 (2018) 196, https://doi.org/10.

/j.fluid.2018.05.004

A.S. Hukkerikar, R.J. Meier, G. Sin, R. Gani, A method to estimate the enthalpy of formation of organic compounds with chemical accuracy, Fluid Phase Equilib. 348 (2013) 23, https://doi.org/10.1016/J.FLUID.2013.03.018

N. Cohen, Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogenoxygen compounds, J. Phys. Chem. Ref. Data. 25 (1996) 1411, https://doi.org/10.1063/1.555988

J. L. Holmes and C. Aubry, Group additivity values for estimating the enthalpy of formation of organic compounds: An update and reappraisal. 1. C, H and O, J. Phys. Chem A 115 (2011)10576, https://doi.org/10.1021/jp202721k E.S. Domalski and E.D. Hearing, Estimation of the Thermodynamic Properties of C-HN-O-S-Halogen Compounds at 298.15 K, J. Phys. Chem. Ref. Data. 22 (1993) 805–, https://doi.

org/10.1063/1.555927

R. Naef, A generally applicable computer algorithm based on the group additivity method for the calculation of seven molecular descriptors: heat of combustion, LogPo/w, LogS, refractivity, polarizability, toxicity and logbb of organic compounds; scope and limits of applicability, Molecules 20 (2015) 18279, https://doi.org/10.3390/molecules201018279

R. Naef and W.E. Acree Jr., Calculation of five thermodynamic molecular descriptors by means of a general computer algorithm based on the group-additivity method: standard enthalpies of vaporization, sublimation and solvation, and entropy of fusion of ordinary organic molecules and total phasechange entropy of liquid crystals, Molecules 22 (2017) 1059, https://doi.org/10.3390/molecules22071059

J. D. Cox, D. D. Wagman and V. A. Medvedev, CODATA key values for thermodynamics Hemisphere Pub. Corp. (1989)

M. V. Roux, M. Temprado and J. S. Chickos, Vaporization, fusion and sublimation enthalpies of the dicarboxylic acids from C4 to C14 and C16 , J. Chem. Thermodynamics 37 (2005) 941, https://doi.org/10.1016/j.jct.2004.12.011

CAS Scifinder., Substance identifier (value calculated using Advanced Chemistry Development (ACD/Labs) ,Software V11.02 (© 1994-2022 ACD/Labs) (2022)

C. Sousa, M. A. R. Matos and V. M. F. Morais, Experimental and Computational Thermochemical Study of Maleic Anhydride and Vinylene Carbonate, J. Phys. Chem A 121 (2017) 9474, https://doi.org/10.1021/acs.jpca.7b07175

Y. Meng-Yan and G. Plicher, Enthalpies of combustion of succinic anhydride, glutaric anhydride and glutarimide, J.Chem. Thermodynamics 22 (1990) 893, https://doi.org/10.1016/0021-9614(90)90177-R

J. B. Pedley, R. D. Naylor and S. P. Kirby, Thermochemical Data of Organic Compounds, computer analysed thermochemical data IV (1986), https://doi.org/10.1007/978-94-009-4099-4

J. D. Cox and G. Plicher, Thermochemistry or organic and organometallic compounds, NIST Chemistry Web Book 69(1970) 1.

W. V. Steele, R. D. Charico, A. B. Cowell, S. E. Knipmeyer and A. Nguyen, Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for 1,4-Diisopropylbenzene, 1,2,4,5-Tetraisopropylbenzene, Cyclohexanone Oxime, Dimethyl Malonate, Glutaric Acid, and Pimelic Acid, J. Chem. Eng. Data 47 (2002) 725, https://doi.org/10.1021/je010088b

A. Vatani, M. Mehrpooya and F. Gharagheizi, Prediction of Standard Enthalpy of Formation by a QSPR Model, Int. J. Mol. Sci 8 (2007) 407, https://doi.org/10.3390/i8050407

B. Douglas, Computational Methods in Organic Thermochemistry. 2. Enthalpies and Free Energies of Formation for Functional Derivatives of Organic Hydrocarbons, J. Org. Chem. 72(2007) 7313, https://doi.org/10.1021/jo071213a

M. A. V. Ribeiro da Silva, J. I. T. A. Cabral, P. Gomes and J. R. B. Gomes, Combined Experimental and Computational Study of the Thermochemistry of Methylpiperidines, J. Org.Chem. 71 (2006) 3677, https://doi.org/10.1021/jo052468w

W. Good, J. Chem. Eng. Data 17 (1972) 28.

S. P. Verevkin, J. Chem. Thermodyn. 29 (1997) 891.

Downloads

Published

2023-09-01

How to Cite

[1]
M. A. García-Castro, F. Díaz-Sánchez, J. A. Galicia-Aguilar, and E. Vidal-Robles, “Standard molar enthalpies of formation of 3-methylglutaric and 3,3-dimethylglutaric anhydrides”, Rev. Mex. Fís., vol. 69, no. 5 Sep-Oct, pp. 051701 1–, Sep. 2023.

Issue

Section

17 Thermodynamics and Statistical Physics