Dinámica molecular de grano grueso de la proteína tau

Authors

  • Luciano Robert-Jimenez Instituto Tecnólogico Superior de Xalapa
  • Susana Figueroa-Gerstenmaier Universidad de Guanajuato
  • Gustavo Basurto-Islas Universidad de Guanajuato
  • Salvador Herrera-Velarde Instituto Tecnologico Superior de Xalapa

DOI:

https://doi.org/10.31349/RevMexFis.69.031701

Keywords:

Alzheimer disease, intrinsic disorder protein, coarse-grained modelling, SIRAH.

Abstract

Currently about 48 million people worldwide live with Alzheimer's disease, the most common form of dementia, and still without cure. This disease is partially due to abnormal posttranslational modifications in the protein tau, that in turn induce its abnormal polymerization, forming fibrils and neurofibrillary tangles. Tau does not have a well-defined structure, known as intrinsically disordered protein. Molecular dynamics is an effective method to study this kind of protein. In this work, molecular dynamics with SIRAH (Southamerican Initiative for a Rapid and Accurate Hamiltonian) force field was employed to model two different systems of tau, each with two protein molecules. In the first system, the two proteins are immersed only in water (represented as an explicit solvent), in the second system, in addition to the solvent, ions were added to investigate if charges presence induce protein self-aggregation. The structural modifications of tau were evaluated from 1 µs trajectory at 310 K. For each system, the proteins showed important changes with respect to the initial configuration; there are some differences in the secondary structure according to the presence or absence of ions. We identify that, in both systems, there is no evidence of tau aggregation. The results validated the use of the SIRAH force field to study large proteins and the capacity to reach temporal and spatial scales close to the experimental studies. In addition, the conformational analysis of the obtained trajectories suggests, for the first time, a molecular dynamics perspective that contributes to the understanding and identification of protein-protein interaction regions.

Actualmente, a nivel mundial, alrededor de 48 millones de personas padecen la enfermedad de Alzheimer, la forma más común de demencia, para la cual no hay cura. La enfermedad se debe, parcialmente, a las alteraciones postraduccionales que experimenta la proteína tau y que favorecen su polimerización anormal formando fibrillas y marañas neurofibrilares. La tau es una proteína intrínsecamente desordenada, es decir, no posee una estructura bien definida. Una técnica eficaz en el estudio de este tipo de proteínas es la dinámica molecular. En este trabajo se utilizó dinámica molecular empleando el campo de fuerza SIRAH (del inglés: Southamerican Initiative for a Rapid and Accurate Hamiltonian) para modelar dos sistemas distintos de tau, cada uno con dos moléculas de proteína. En el primer sistema las dos proteínas están inmersas únicamente en agua (representada como solvente explícito) y en el segundo sistema, además del solvente, se agregaron iones para investigar la influencia de cargas en la posible agregación de tau. A partir de la trayectoria de 1 μs a una temperatura de 310 K, se analizaron los cambios estructurales que experimentaron los monómeros de tau. En ambos sistemas, las proteínas presentaron cambios importantes respecto a la configuración inicial; existiendo algunas diferencias en la estructura secundaria acorde a la presencia o ausencia de iones. Identificamos que, en ambos sistemas, no hay evidencia de un proceso agregativo. Los resultados validaron el uso del campo de fuerza SIRAH para estudiar proteínas de gran tamaño y la factibilidad de alcanzar escalas temporales y espaciales cercanas a las experimentales. Además, el análisis conformacional de las trayectorias obtenidas ofrece, por primera vez, una perspectiva desde la dinámica molecular de la forma en que interactúan dos proteínas tau completas, lo cual contribuye a la comprensión del fenómeno y a la identificación de las regiones de interacción proteína-proteína.

References

V. J. De-Paula, M. Radanovic, B. S. Diniz, and O. V Forlenza, Alzheimer’s Disease BT - Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease, J. R. Harris, Ed. Dordrecht: Springer Netherlands, 2012, pp. 329-352.

Instituto Mexicano del Seguro Social, Diagnostico y Tratamiento de la Enfermedad de Alzheimer. Guıa de Evidencias y Recomendaciones, Guia Pract. Clin. Mex. IMSS, (2017) 4.

S. Mondragon-Rodrıguez et al., Causes versus effects: the increasing complexities of Alzheimer ’s disease pathogenesis, Expert Rev. Neurother. 10 (2010) 683, https://doi.org/10.1586/ern.10.27

H. Liu, X. Liu, S. Zhou, X. An, H. Liu, and X. Yao, Disclosing the Template-Induced Misfolding Mechanism of Tau Protein by Studying the Dissociation of the Boundary Chain from the Formed Tau Fibril Based on a Steered Molecular Dynamics Simulation, ACS Chem. Neurosci. 10 (2019) 1854, https://doi.org/10.1021/acschemneuro.8b00732

P. Lopez-Camacho, Rn.-H. Guzman-Hernandez, G. Hernandez, M. Dıaz, F. Garcıa-Sierra, and G. Basurto-Islas, Research and therapeutics in Alzheimer’s disease based on amyloid beta and tau, Arch Neurocien, 22 (2017) 72

J. Wan, Y. Gong, Z. Xu, X. Dong, G. Wei, and Q. Zhang, Molecular dynamics simulations reveal the destabilization mechanism of Alzheimer’s disease-related tau R3-R4 Protofilament by norepinephrine, Biophys. Chem., 271 (2021) 106541, https://doi.org/10.1016/j.bpc.2021.106541

G. Basurto-Islas, J. Luna-Muñoz, A. L. Guillozet-Bongaarts, L. I. Binder, R. Mena, and F. Garcıa-Sierra, Accumulation of Aspartic Acid421- and Glutamic Acid391-Cleaved Tau in Neurofibrillary Tangles Correlates With Progression in Alzheimer Disease, J. Neuropathol. Exp. Neurol. 67 (2008) 470, https://doi.org/10.1097/NEN.0b013e31817275c7

A. W. P. Fitzpatrick et al., Cryo-EM structures of tau filaments from Alzheimer’s disease, Nature, 547 (2017) 185, https://doi.org/10.1038/nature23002

B. Nizynski, W. Dzwolak, and K. Nieznanski, Amyloidogenesis of Tau protein, Protein Sci. 26 (2017) 2126, https://doi.org/10.1002/pro.3275

M. Pevalova, P. Filipcik, M. Novak, J. Avila, and K. Iqbal, Posttranslational modifications of tau protein, Bratisl. Lek. Listy, 107 (2006) 346

Available: https://pubmed.ncbi.nlm.nih.gov/17262986/#:~:text=In%20human%2C%20tau%20protein%20undergoes,%20of%20Alzheimer's%20disease%20(AD)

L. Martin, X. Latypova, and F. Terro, Post-translational modifications of tau protein: implications for Alzheimer’s disease, Neurochem. Int. 58 (2011) 458

F. Garcıa-Sierra, S. Mondragon-Rodrıguez, and G. BasurtoIslas, Truncation of Tau Protein and its Pathological Significance in Alzheimer’s Disease, J. Alzheimer’s Dis. 14 (2008) 401, https://doi.org/10.3233/JAD-2008-14407

S. Mondragon-Rodrıguez et al., Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer ’s disease, Int. J. Exp. Pathol., 89 (2008) 81, https://doi.org/10.1111/j.1365-2613.2007.00568.x

S. Mondragon-Rodrıguez, G. Basurto-Islas, L. I. Binder, and F. Garcıa-Sierra, Conformational changes and cleavage; are these responsible for the tau aggregation in Alzheimer ’s disease?, Future Neurol . 4 39 (2008), https://doi.org/10. 2217/14796708.4.1.39

L. Rani, J. Mittal, and S. S. Mallajosyula, Effect of phosphorylation and O-GlcNAcylation on proline-rich domains of Tau, J. Phys. Chem. B, 124 (2020) 1909.

C. Alquezar, S. Arya, and A. W. Kao, Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation, Frontiers in Neurology 11 (2021),

Available: https://www.frontiersin.org/articles/10.3389/fneur.2020.595532

T. G. Castro, F. D. Munteanu, and A. Cavaco-Paulo, Electrostatics of tau protein by molecular dynamics, Biomolecules, 9 (2019) https://doi.org/10.3390/BIOM9030116

S. Bhattacharya and X. Lin, Recent Advances in Computational Protocols Addressing Intrinsically Disordered Proteins, Biomolecules 9 (2019), https://doi.org/10.3390/biom9040146

V. Monje-Galvan, L. Warburton, and J. B. Klauda, Setting Up All-Atom Molecular Dynamics Simulations to Study the Interactions of Peripheral Membrane Proteins with Model Lipid Bilayers In: Drin G. (eds) Intracellular Lipid Transport. Methods in Molecular Biology, 1949 (2019) 325 https://doi.org/10.1007/978-1-4939-9136-522

H. Liu et al., Disclosing the Mechanism of Spontaneous Aggregation and Template-Induced Misfolding of the Key Hexapeptide (PHF6) of Tau Protein Based on Molecular Dynamics Simulation, ACS Chem. Neurosci., 10 (2019) 4810, https://doi.org/10.1021/acschemneuro.9b00488

P. Derreumaux, V. H. Man, J. Wang, and P. H. Nguyen, Tau R3-R4 Domain Dimer of the Wild Type and Phosphorylated Ser356 Sequences. I. In Solution by Atomistic Simulations, J. Phys. Chem. B, 124 (2020) 2975

A. Battisti and A. Tenenbaum, Molecular dynamics simulation of intrinsically disordered proteins, Mol. Simul., 38 (2012) 139, https://doi.org/10.1080/08927022.2011.608671

A. Battisti, G. Ciasca, A. Grottesi, A. Bianconi, and A. Tenenbaum, Temporary secondary structures in tau, an intrinsically disordered protein, Mol. Simul., 38 (2012) 525, https://doi.org/10.1080/08927022.2011.633347

A. Battisti, G. Ciasca, and A. Tenenbaum, Transient tertiary structures in tau, an intrinsically disordered protein, Mol. Simul. 39 (2013) 1084, https://doi.org/10.1080/08927022.2013.794275

K. I. Popov, K. A. T. Makepeace, E. V Petrotchenko, N. V Dokholyan, and C. H. Borchers, Insight into the Structure of the x201c;Unstructured x201d; Tau Protein, Structure, 27 (2019) 1710, https://doi.org/10.1016/j.str.2019.09.003

E. Lindahl, Molecular Dynamics Simulations, in Molecular Modeling of Proteins. Methods in Molecular Biology (Methods and Protocols), K. A., Ed. New York, NY: Humana Press, 2015

H. I. Ingolfsson et al., The Power of Coarse Graining in Biomolecular Simulations, Wiley Interdiscip. Rev. Comput. Mol. Sci., 4 (2014) 225

A. Dan and H. F. Chen, Secondary structures transition of tau protein with intrinsically disordered proteins specific force field, Chem. Biol. Drug Des. 93 (2019) 242, https://doi.org/10.1111/cbdd.13407

R. Paul, P. Stefano, and S. D. E., Developing a molecular dynamics force field for both folded and disordered protein states, Proc. Natl. Acad. Sci., 115 (2018) E4758, https://doi.org/10.1073/pnas.1800690115

R. Paul, P. Stefano, and S. D. E., Developing a molecular dynamics force field for both folded and disordered protein states, Proc. Natl. Acad. Sci., 115 (2018) E4758, https://doi.org/10.1073/pnas.1800690115

J. Huang et al., CHARMM36m: an improved force field for folded and intrinsically disordered proteins, Nat. Methods, 14 (2017) 71

P. Das, S. Matysiak, and J. Mittal, Looking at the Disordered Proteins through the Computational Microscope, ACS Cent. Sci. 4 (2018) 534, https://doi.org/10.1021/acscentsci.7b00626

A. P. Latham and B. Zhang, Unifying coarse-grained force fields for folded and disordered proteins, Curr. Opin. Struct. Biol. 72 (2022) 63, https://doi.org/10.1016/j.sbi.2021.08.006

P. C. T. Souza et al., Martini 3: a general purpose force field for coarse-grained molecular dynamics, Nat. Methods 18 (2021) 382, https://doi.org/10.1038/s41592-021-01098-3

F. E. Thomasen, F. Pesce, M. A. Roesgaard, G. Tesei, and K. Lindorff-Larsen, Improving Martini 3 for Disordered and Multidomain Proteins, J. Chem. Theory Comput. 18 (2022) 2033, https://doi.org/10.1021/acs.jctc.1c01042

M. R. Machado, E. E. Barrera, F. Klein, M. Sóñora, S. Silva, and S. Pantano, The SIRAH 2.0 Force Field: Altius, Fortius, Citius, J. Chem. Theory Comput. 15 (2019) 2719, https://doi.org/10.1021/acs.jctc.9b00006

R. Ramis et al., A Coarse-Grained Molecular Dynamics Approach to the Study of the Intrinsically Disordered Protein α-Synuclein, J. Chem. Inf. Model. 59 (2019) 1458, https://doi.org/10.1021/acs.jcim.8b00921

F. Klein, E. E. Barrera, and S. Pantano, Assessing SIRAH ’s Capability to Simulate Intrinsically Disordered Proteins and Peptides, J. Chem. Theory Comput., 17 (2021) 599, https://doi.org/10.1021/acs.jctc.0c00948

L. Darre, M. R. Machado, A. F. Brandner, H. C. Gonzalez, S. Ferreira, and S. Pantano, SIRAH: A Structurally Unbiased Coarse-Grained Force Field for Proteins with Aqueous Solvation and Long-Range Electrostatics, J. Chem. Theory Comput., 11 (2015) 723

E. Jurrus et al., Improvements to the APBS biomolecular solvation software suite, Protein Sci. 27 (2018) 112, https://doi.org/10.1002/pro.3280

S. Pall ´ et al., Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS, J. Chem. Phys. 153 (2020) 134110, https://doi.org/10.1063/5.0018516

M. J. Abraham et al., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1 (2015) 19

M. J. Abraham, van der S. D. L, L. E., H. B., and G. T. Development, GROMACS User Manual version 2018, www. gromacs.org (2018), 2018

M. Machado and S. Pantano, SIRAH Tools: Mapping, Backmapping and Visualization of Coarse-Grained Models, Bioinformatics 32 p. 1568, 2016

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual Molecular Dynamics, J. Mol. Graph. 14 (1996) 33

E. Barreto and J. R. Cressman, Ion concentration dynamics as a mechanism for neuronal bursting, J. Biol. Phys., 37 (2011) 361, https://doi.org/10.1007/s10867-010-9212-6

G. Bussi, D. Donadio, and M. Parrinello, Canonical Sampling through Velocity Rescaling, J. Chem. Phys. 126 (2007) 14101

M. Parrinello and A. Rahman, Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method, J. Appl. Phys. 52 (1981) 7182

T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An Nslog(N) method for Ewald sums in large systems, J. Chem. Phys., 98 (1993) 10089, https://doi.org/10.1063/1.464397

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, A Smooth Particle Mesh Ewald Method, J. Chem. Phys. 103 (1995) 8577

M. del C. Cardenas-Aguayo, L. Gomez-Virgilio, S. DeRosa, and M. A. Meraz-Rıos, The Role of Tau Oligomers in the Onset of Alzheimer ’s Disease Neuropathology, ACS Chem. Neurosci. 5 (2014) 1178, https://doi.org/10.1021/cn500148z

C. A. Lasagna-Reeves, D. L. Castillo-Carranza, M. J. Guerrero-Muñoz, G. R. Jackson, and R. Kayed, Preparation and Characterization of Neurotoxic Tau Oligomers, Biochemistry 49 (2010) 10039, https://doi.org/10.1021/bi1016233

M. A. Meraz-Rıos, K. I. Lira-De Leon, V. Campos-Peña, M. A. De Anda-Hernandez, and R. Mena-Lopez, Tau oligomers and aggregation in Alzheimer’s disease, J. Neurochem. 112 (2010) 1353

J. Avila et al., Tau Structures, Frontiers in Aging Neuroscience, 8 (2016)

Available: https://www.frontiersin.org/article/10.3389/fnagi.2016.00262

D. Wang et al., The Structure Biology of Tau and Clue for Aggregation Inhibitor Design, Protein J. 40 (2021) 656, https://doi.org/10.1007/s10930-021-10017-6

P. M. Aguilar-Hernandez, Estudio de la dinamica de agregacion de dos proteınas tau usando simulacion molecular, INSTITUTO TECNOLOGICO SUPERIOR DE XALAPA, 2020

M. Y. Lobanov, N. S. Bogatyreva, and O. V Galzitskaya, Radius of gyration as an indicator of protein structure compactness, Mol. Biol. 42 (2008) 623, https://doi.org/10.1134/S0026893308040195

J. A. Lemkul, Gromacs tutorial. Analysis, mdtutorials, 2022. https://www.mdtutorials.com/gmx/lysozyme/10 analysis2.html

H. Liu, D. Song, Y. Zhang, S. Yang, R. Luo, and H.-F. Chen, Extensive tests and evaluation of the CHARMM36IDPSFF force field for intrinsically disordered proteins and folded proteins, Phys. Chem. Chem. Phys. 21 (2019) 21918, https://doi.org/10.1039/C9CP03434J

A. Battisti, G. Ciasca, A. Grottesi, and A. Tenenbaum, Thermal compaction of the intrinsically disordered protein tau: entropic, structural, and hydrophobic factors, Phys. Chem. Chem. Phys. 19 (2017) 8435, https://doi.org/10.1039/C6CP07683A

A. L. Kolesnikov, Y. A. Budkov, and E. A. Nogovitsyn, Coarse-Grained Model of Glycosaminoglycans in Aqueous Salt Solutions. A Field-Theoretical Approach, J. Phys. Chem. B 118 (2014) 13037, https://doi.org/10.1021/jp503749a

I. Aier, P. K. Varadwaj, and U. Raj, Structural insights into conformational stability of both wild-type and mutant EZH2 receptor, Sci. Rep. 6 (2016) 34984 https://doi.org/10.1038/srep34984

P. Sneha and C. George Priya Doss, Chapter Seven - Molecular Dynamics: New Frontier in Personalized Medicine, in Personalized Medicine, vol. 102, R. B. T.-A. in P. C. and S. B. Donev, Ed. Academic Press, 2016, pp. 181-224

S. Wegmann, I. D. Medalsy, E. Mandelkow, and D. J. Müller, The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush, Proc. Natl. Acad. Sci., 110 (2013) E313, https://doi.org/10.1073/pnas.1212100110

Y. Mutreja and T. C. Gamblin, Chapter 4 - Optimization of in vitro conditions to study the arachidonic acid induction of 4R isoforms of the microtubule-associated protein tau, in Methods in Tau Cell Biology, vol. 141, S. C. Feinstein and N. E. B. T.-M. in C. B. LaPointe, Eds. Academic Press, 2017, pp. 65-88

B. Combs, C. T. Tiernan, C. Hamel, and N. M. Kanaan, Chapter 3 - Production of recombinant tau oligomers in vitro, in Methods in Tau Cell Biology, vol. 141, S. C. Feinstein and N. E. B. T.-M. in C. B. LaPointe, Eds. Academic Press, 2017, pp. 45-64.

Downloads

Published

2023-05-01

How to Cite

[1]
L. Robert-Jimenez, S. Figueroa-Gerstenmaier, G. Basurto-Islas, and S. Herrera-Velarde, “Dinámica molecular de grano grueso de la proteína tau”, Rev. Mex. Fís., vol. 69, no. 3 May-Jun, pp. 031701 1–, May 2023.

Issue

Section

17 Thermodynamics and Statistical Physics