Star shape interferometer with reduced vibration sensitivity

Authors

DOI:

https://doi.org/10.31349/RevMexFis.69.031302

Keywords:

Star shape interferometer; vibration sensitivity suppression; independent arm access

Abstract

An optical interferometer has a high sensitivity to displacements of the mirrors and other optical elements, something that becomes a source of fluctuations in situations where one is only interested in the phase change due to a sample inserted in one of the paths. A Sagnac interferometer minimizes this sensitivity by having the two beams follow opposite trajectories, so that a mirror displacement gives a similar phase change for both paths, but makes it impossible to insert an element that affects only one path. We present a new kind of interferometer, the Star interferometer, where the two beams still interact with all the optical elements while having different trajectories. We obtain a common phase change in both trajectories by having a different number of turns for each path. Having independent access to both trajectories makes it possible to determine the phase change due to a sample inserted in one of the paths, opening new possibilities for interferometric configurations that maintain a reduced sensitivity to displacements of the optical elements.

References

H. Müller et al., Modern Michelson-Morley Experiment using Cryogenic Optical Resonators, Phys. Rev. Lett. 91 (2003) 020401, https://doi.org/10.1103/PhysRevLett.91.020401

B. P. Abbott and et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102, https://doi.org/10.1103/PhysRevLett.116.061102

B. P. Abbott et al., GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116 (2016) 241103, https://doi.org/10.1103/PhysRevLett.116.241103

K. Numata, A. Kemery, and J. Camp, Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities, Phys. Rev. Lett. 93 (2004) 250602, https://doi.org/10.1103/PhysRevLett.93.250602

L. Chen et al., Vibration-induced elastic deformation of FabryPerot cavities, Phys. Rev. A 74 (2006) 053801, https://doi.org/10.1103/PhysRevA.74.053801

T. Nazarova, F. Riehle, and U. Sterr, Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser, Appl. Phys. B 83 (2006) 531, https://doi.org/10.1007/s00340-006-2225-y

S. A. Webster, M. Oxborrow, and P. Gill, Vibration insensitive optical cavity, Phys. Rev. A 75 (2007) 011801(R), https://doi.org/10.1103/PhysRevA.75.011801

A. D. Ludlow et al., Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15, Opt. Lett. 32 (2007) 641, https://doi.org/10.1364/OL.32.000641

Y. Chen et al., Interferometers for Displacement-Noise-Free Gravitational-Wave Detection, Phys. Rev. Lett. 97 (2006) 151103, https://doi.org/10.1103/PhysRevLett.97.151103

M. Xiao, et al., Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms, Phys. Rev. Lett. 74 (1995) 666, https://doi.org/10.1103/PhysRevLett.74.666

G. T. Purves, C. S. Adams, and I. G. Hughes, Sagnac interferometry in a slow-light medium, Phys. Rev. A 74 (2006) 023805, https://doi.org/10.1103/PhysRevA.74.023805

G. Jundt et al., Non-linear Sagnac interferometry for pumpprobe dispersion spectroscopy, Eur. Phys. J. D 27 (2003) 273

T. Nagata et al., Beating the Standard Quantum Limit with Four-Entangled Photons, Science 316 (2007) 726, https://doi.org/10.1126/science.1138007

M. Micuda et al., Highly stable polarization independent MachZehnder interferometer, Rev. Sci. Instrum. 85 (2014) 083103, https://doi.org/10.1063/1.4891702

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Ltd, New York, 1991), pp. 246-256, https://doi.org/10.1002/0471213748.ch1

J. Alnis et al., Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralowexpansion glass Fabry-Perot cavities, Phys. Rev. A 77 (2008) 053809, https://doi.org/10.1103/PhysRevA.77.053809

T. Legero, T. Kessler, and U. Sterr, Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors, J. Opt. Soc. Am. B 27 (2010) 914, https://doi.org/10.1364/JOSAB.27.000914

Y. Y. Jiang et al., Making optical atomic clocks more stable with 10-16 level laser stabilization, Nat. Photonics 5 (2011) 158

T. Kessler et al., A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity, Nat. Photonics 6 (2012) 687

B. C. Young et al., Visible Lasers with Subhertz Linewidths, Phys. Rev. Lett. 82 (1999) 3799, https://doi.org/10.1103/PhysRevLett.82.3799

S. Amairi et al., Reducing the effect of thermal noise in optical cavities, Appl. Phys. B 113 (2013) 233

M. Notcutt, et al., Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers, Phys. Rev. A 73 (2006) 031804(R), https://doi.org/10.1103/PhysRevA.73.031804

J. Millo et al., Ultrastable lasers based on vibration insensitive cavities, Phys. Rev. A 79 (2009) 053829, https://doi.org/10.1103/PhysRevA.79.053829

L. Del Bino, et al., Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator, Sci. Rep. 7 (2017) 43142, https://doi.org/10.1038/srep43142

F. Pedrotti, L. Pedrotti, and L. Pedrotti, Introduction to optics (Prentice Hall, 2006)

J. A. Ferrari and E. M. Frins, Single-element interferometer, Optics communications 279 (2007) 235

J. Martínez-Rincón et al., Ultrasensitive inverse weak-value tilt meter, Opt. Lett. 42 (2017) 2479, https://doi.org/10.1364/OL.42.002479

N. Arias et al., Low phase noise beams for Raman transitions with a phase modulator and a highly birefringent crystal, Opt. Express 25 (2017) 5290

J. Jin et al., Thickness and refractive index measurement of a silicon wafer based on an optical comb, Opt. Express 18 (2010) 18339

R. Bommareddi, Applications of Optical Interferometer Techniques for Precision Measurements of Changes in Temperature, Growth and Refractive Index of Materials, Technologies 2 (2014) 54

A. Börzsönyi et al., Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry, Opt. Commun. 281 (2008) 3051.

Downloads

Published

2023-05-01

How to Cite

[1]
J. de la Rosa, E. Gomez, and V. M. Valenzuela, “Star shape interferometer with reduced vibration sensitivity”, Rev. Mex. Fís., vol. 69, no. 3 May-Jun, pp. 031302 1–, May 2023.