Circadian cycles: A time-series approach

Authors

  • Lorena García-Iglesias Universidad Autónoma del Estado de Morelos
  • Ana Leonor Rivera Instituto de Ciencias Nucleares, UNAM
  • Rubén Fossion Instituto de Ciencias Nucleares, UNAM

DOI:

https://doi.org/10.31349/RevMexFis.69.051101

Keywords:

Circadian parameters; day-to-day variability; homeostasis

Abstract

The extraction of circadian cycles from experimental data can be interpreted as a specific case of time-series or signal analysis, but chrono- biology and time-series analysis appear to have developed according to separate paths. Whereas some techniques such as continuous (CWT) and discrete wavelet analysis (DWT) are used frequently in rhythmobiology, other specialized methdos such as digital filters, nonlinear mode decomposition (NMD), singular spectrum analysis (SSA), empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and complete ensemble empirical model decomposition with adaptive noise (CEEMDAN) have only occasionally been applied. No studies are available that compare the applicability between a wide variety of different methods or for different variables, and this is the purpose of the present contribution. These methods improve the goodness-of-fit of the circadian cycle with respect to the standard approach of cosinor analysis. They have the additional advantage of being able to quantify the day-to-day variability of the circadian parameters of mesor, amplitude, period and acrophase around their average values, with potential clinical applications to distinguish between healthy and unhealthy populations. Finally, the circadian parameters are interpreted within the context of homeostatic regulation with distinctive statistics for regulated and effector variables.

References

U. Schibler and P. Sassone-Corsi, A Web of Circadian Pace- makers, Cell 111 (2002) 919

J. Mohawk, C. Green, and T. JS, Central and peripheral circa- dian clocks in mammals, Annu Rev Neurosci. 35 (2012) 445

W. J. Rietveld, D. S. Minors, and J. M. Waterhouse, Circadian Rhythms and Masking: An Overview, Chronobiology Interna- tional 10 (1993) 306

A.Martinez-Nicolas,etal.,UncoveringDifferentMaskingFac- tors on Wrist Skin Temperature Rhythm in Free-Living Sub- jects, PLoS ONE 8 (2013) e61142

J. L. Ditty, S. R. Mackey, and C. H. Johnson, Bacterial Circa- dian Programs (Springer, Heidelberg, 2009).

D. Staiger, Plant Circadian Networks Methods and Protocols (Humana Press, New York, 2014).

D. Denlinger, J. Giebultowicz, and D. Saunders, Insect tim- ing: Circadian rhythmicity to seasonality (Elsevier, Amster- dam, 2001).

J. Aschoff, S. Daan, and G. G. (eds.), Vertebrate Circadian Sys- tems: Structure and Physiology (Springer-Verlag, Heidelberg, Berlin, 1982).

D. S. Minors and J. M. Waterhouse, Circadian Rhythms and the Human (Wright PSG, Bristol, 1981).

R.Refinetti,CircadianRhythmsandtheHuman,2nded.(CRC Press, Boca Rato, 2006).

M. L. Gumz, Physiology in Health and Disease (Springer, Hei- delberg, 2016).

S. M. Jazwinski, V. P. Belancio, and S. M. H. (eds.), Circa- dian Rhythms and Their Impact on Aging (Springer, Heidel- berg, 2017).

F. Halberg, Y. L. Tong, and E. A. Johnson, Circadian System Phase - An Aspect of Temporal Morphology ; Procedures and Illustrative Examples, In Springer Berlin Heidelberg, pp. 20–48 (1967).

G. Cornelissen, Cosinor-based rhythmometry, Theoretical Bi- ology and Medical Modelling 11 (2014) 1

P. V. d. N. Nóbrega, et al., Sleep and frailty syndrome in elderly residents of long-stay institutions: A cross-sectional study, Geriatrics & Gerontology International 14 (2014) 605

E. S. Musiek, et al., Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease, JAMA Neurology 75 (2018) 582

K. Suibkitwanchai, et al., Nonparametric time series summary statistics for high-frequency accelerometry data from individu- als with advanced dementia, PLOS ONE 15 (2020)

K. L. Gamble, et al., Delayed Sleep Timing and Symptoms in Adults With Attention-Deficit/Hyperactivity Disorder: A Controlled Actigraphy Study, Chronobiology International 30 (2013) 598

S. A. Tafoya, et al., Indicators of vulnerability associated with less healthy circadian rhythms in undergraduate medical in- terns, Chronobiology International 36 (2019) 1782

R. Fossion, et al., Multiscale adaptive analysis of circadian rhythms and intradaily variability: Application to actigraphy time series in acute insomnia subjects, PLoS ONE 12 (2017)

W. Witting, et al., Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease, Biological Psychi- atry 27 (1990) 563

B. S. Gonçalves, et al., Nonparametric methods in actigraphy: An update, Sleep Science 7 (2014) 158

T. Ashish, Modern control design (John Wiley & Sons, Ltd., Chichester, 2002).

D. T. Chen, et al., Rheology of Soft Materials, Annual Review of Condensed Matter Physics 1 (2010) 301

R. Fossion, A. L. Rivera, and B. Esta ̃nol, A physicist’s view of homeostasis: How time series of continuous monitoring re- flect the function of physiological variables in regulatory mech- anisms, Physiological Measurement 39 (2018)

R. Fossion, et al., Homeostasis from a Time-Series Perspec- tive: An Intuitive Interpretation of the Variability of Physiolog- ical Variables, In L. Olivares-Quiroz and O. Resendis-Antonio, eds., Quantitative Models for Microscopic to Macroscopic Bio- logical Macromolecules and Tissues, pp. 87–109 (Springer In- ternational Publishing AG, 2018).

R. Fossion, A. Sáenz-Burrola, and L. Zapata-Fonseca, On the stability and adaptability of human physiology: Gaussians meet heavy-tailed distributions, INTERdisciplina 8 (2020)

R. Fossion, et al., A Time-Series Approach to Assess Physio- logical and Biomechanical Regulatory Mechanisms, In D. R. Wood, et al., eds., 2019-20 MATRIX Annals, vol. 4, chap. 14 (Springer, 2021).

T. Butz, Fourier Transformation for Pedestrians (Springer- Cham, Heidelberg, 2015).

P. S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance (Institute of Physics Publishing (IOP), Bristol, 2002).

A. E. Hramov, et al., Wavelets in Neuroscience (Springer- Verlag, Heidelberg, Heidelberg, 2015).

D. Iatsenko, Nonlinear Mode Decomposition: Theory and Ap- plications (Springer-Verlag, Heidelberg, 2015).

D. Iatsenko, P. V. E. McClintock, and A. Stefanovska, Nonlin- ear mode decomposition: A noise-robust, adaptive decomposi- tion method, Phys. Rev. E 92 (2015) 032916

J. B. Elsner and A. A. Tsonis, Singular Spectrum Analysis: A New Tool in Time Series Analysis (Springer Science, New York, 1996).

N. Golyandina, V. Nekrutkin, and A. Zhigljavsky, Analysis of Time Series Structure: SSA and Related Techniques (Chapman & Hall, Boca Raton, 2000).

N.GolyandinaandA.Zhigljavsky,SingularSpectrumAnalysis for Time Series (Springer, Heidelberg, 2013).

N. E. Huang, et al., The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non- Stationary Time Series Analysis, Proceedings of Royal Society of London A 454 (1998) 903

N. E. Huang, et al., confidence limit for the empirical mode decomposition and Hilbert spectral analysis, Proceedings of Royal Society of London A 4592 (2003) 2317–2345

Z. Wu and N. E. Huang, Ensemble Empirical Mode Decom- position: A noise-assisted data anlysis method, Advances in Adaptative Data Analysis 1 (2009) 1

M. E. Torres, et al., A complete ensemble empirical mode de- composition with adaptive noise, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Pro- ceedings (2011) 4144

G. Hammad, et al., pyActigraphy: Open-source python pack- age for actigraphy data visualization and analysis, PLOS Com- putational Biology 17 (2021) 1

M. Moškon, CosinorPy: a python package for cosinor-based rhythmometry, BMC Bioinformatics 21 (2020) 485

B. A. Shenoi, Introduction to digital signal processing and filter design (John Wiley & Sons, Ltd., Hoboken, New Jersey, 2006).

T. O’Haver, Pragmatic introduction to signal processing (Kin- dle Direct Publishing, 2021).

R.Klette,ConciseComputerVision:AnIntroductionintoThe- ory and Algorithms (Springer-Verlag, London, 2014).

R. Fossion, et al., Quantification of Irregular Rhythms in Chronobiology: A Time-Series Perspective, In M. A. El-Esawi, ed., Circadian Rhythm – Cellular and Molecular Mechanisms, pp. 33–58 (INTECH, 2018).

H. Dowse, Maximum entropy spectral analysis for circadian rhythms: theory, history and practice, Journal of Circadian Rhythms 11 (2013) 6

J. V. Jasien, et al., Cyclic Pattern of Intraocular Pressure (IOP) and Transient IOP Fluctuations in Nonhuman Primates Mea- sured with Continuous Wireless Telemetry, Current Eye Re- search 44 (2019) 1244

L. Z. and G. W., Modeling diurnal hormone profiles by hierar- chical state space models, Stat Med. 34 (2015) 3223

S. Y. Sim, et al., Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects, IEEE Journal of Biomedical and Health Informatics 21 (2017) 407

J. Yin, et al., Actigraphy-based parameter tuning process for adaptive notch filter and circadian phase shift estimation, Chronobiology International 37 (2020) 1552

J. Bonarius, C. Papatsimpa, and J.-P. Linnartz, Parameter Esti- mation in a Model of the Human Circadian Pacemaker Using a Particle Filter, IEEE Transactions on Biomedical Engineering 68 (2021) 1305

C. Mott, et al., Model-Based Human Circadian Phase Estima- tion Using a Particle Filter, IEEE Transactions on Biomedical Engineering 58 (2011) 1325

D. S. Wickramasuriya and R. T. Faghih, A Cortisol-Based En- ergy Decoder for Investigation of Fatigue in Hypercortisolism, In 2019 41st Annual International Conference of the IEEE En- gineering in Medicine and Biology Society (EMBC) (2019) pp. 11–14.

B. E. Westerhof, et al., Variable day/night bias in 24-h non- invasive finger pressure against intrabrachial artery pressure is removed by waveform filtering and level correction, Journal of hypertension 20 (2002) 1981—1986

P. Boškoski, A. Debenjak, and B. M. Boshkoska, Fast Electro- chemical Impedance Spectroscopy: As a Statistical Condition Monitoring Tool (Springer-Verlag, Heidelberg, 2017).

T.L.Leise,etal.,WaveletMeetsActogram,JournalofBiolog- ical Rhythms 28 (2013) 62

P. T. Clemson, G. Lancaster, and A. Stefanovska, Reconstruct- ing Time-Dependent Dynamics, Proceedings of the IEEE 104 (2016) 223

G. Lancaster, et al., Surrogate data for hypothesis testing of physical systems, Physics Reports 748 (2018) 1

D. B. Percival and A. T. Walden, Wavelet methods for time series analysis (Cambridge University Press, London, 2013).

G. R. Lee, et al., PyWavelets: A Python package for wavelet analysis, Journal of Open Source Software 4 (2019) 1237

S. Sanei and H. Hassani, Singular Spectrum Analysis of Biomedical Signals (CRC Press, Boca Raton, 2016).

M. Ghil, et al., Singular Spectrum Analysis: Methodology and Comparison, Reviews of Geophysics 40 (2002) 1

H. Hassani, Singular Spectrum Analysis: Methodology and Comparison, Journal of Data Science 5 (2007) 239

R. Fossion, G. T. Vargas, and J.-C. L. Vieyra, Random- matrix spectra as a time series, Physical Review E 88 (2013) 060902(R)

R. Fossion, A time-series approach to dynamical systems from classical and quantum worlds, AIP Conf. Proc. 1575 (2014) 89

S. Yamazaki, et al., Rhythmic Properties of the Hamster Suprachiasmatic NucleusIn Vivo, Journal of Neuroscience 18 (1998) 10709, 10.1523/JNEUROSCI.18-24-10709. 1998

L. M. García-Iglesias, et al., Quantification of irregular circa- dian cycles using time-series methods, AIP Conf. Proc. 2090 (2017) 050009

N. Golyandina and A. Korobeynikov, Basic Singular Spectrum Analysis and forecasting with R, Computational Statistics & Data Analysis 71 (2014) 934

Z. Wu and N. E. Huang, A study of the characteristics of white noise using the empirical mode decomposition method, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 460 (2004) 1597

D. A. Guzmán, et al., The fractal organization of ultradian rhythms in avian behavior, Scientific Reports 7 (2017) 684

Y. Chen and W. Chen, Detection of circaseptan rhythm and the "Monday effect" from long-term pulse rate dynamics, Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011 (2011) 3780

E. Shimizu, et al., Application of Empirical Mode Decomposi- tion to Mother and Infant Physical Activity, Methods Inf Med 57 (2018) 152

M. A. Colominas, et al., Noise-Assisted EMD Methods in Ac- tion, Advances in Adaptive Data Analysis 04 (2012) 1250025

P.J.J.Luukko,J.Helske,andE.Räsänen,Introducinglibeemd: a program package for performing the ensemble empirical mode decomposition, Computational Statistics 31 545

D. Iatsenko, P. McClintock, and A. Stefanovska, On the extrac- tion of instantaneous frequencies from ridges in time-frequency representations of signals, Signal Processing 125 (2013)

J. Theiler, et al., Testing for nonlinearity in time series: the method of surrogate data, Physica D: Nonlinear Phenomena 58 (1992) 77

L.W.Sheppard,A.Stefanovska,andP.V.McClintock,Detect- ing the harmonics of oscillations with time-variable frequen- cies, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 83 (2011) 1

T. L. Leise, Analysis of Nonstationary Time Series for Bio- logical Rhythms Research, Journal of Biological Rhythms 32 (2017) 187

D. Lyon, The Discrete Fourier Transform, Part 4: Spectral Leakage, Journal of Object Technology 8 (2009) 23

T. L. Leise, Wavelet analysis of circadian and ultradian behav- ioral rhythms, Journal of Circadian Rhythms 11 (2013) 5

J.-C.Leloup,D.Gonze,andA.Goldbeter,LimitCycleModels for Circadian Rhythms Based on Transcriptional Regulation in Drosophila and Neurospora, Journal of Biological Rhythms 14 (1999) 433

A. L. Lloyd and D. Lloyd, Hypothesis: the central oscillator of the circadian clock is a controlled chaotic attractor, Biosystems 29 (1993) 77

Estimation of homeostatic dysregulation and frailty using biomarker variability: a principal component analysis of hemodialysis patients, Scientific Reports 10 (2020) 10314

J. L. Rector, et al., Dynamical indicators of resilience from physiological time series in geriatric inpatients: Lessons learned, Experimental Gerontology 149 (2021) 111341

S. Wainio-Theberge, et al., Variability and task-responsiveness of electrophysiological dynamics: Scale-free stability and os- cillatory flexibility, NeuroImage 256 (2022) 119245

C. Stephens, “Ome” Sweet “ome”: From the Genome to the Conductome, In D. R.Wood, et al., eds., 2019-20 MATRIX Annals, vol. 4, chap. 16 (Springer, 2021).

R. Polikar, The Wavelet Tutorial: The Engineer’s Ultimate Guide to Wavelet Analysis (2nd ed.), (Glassboro, New Jer- sey2021).

I. Dolu and N. O. Nahcivan, Feasibility of the duration of actig- raphy data to illustrate circadian rhythm among cognitively in- tact older people in nursing home: cosinor analysis, Sleep and Biological Rhythms 18 (2020) 59

O. Minaeva, et al., Level and timing of physical activity during normal daily life in depressed and non-depressed individuals, Translational Psychiatry 10 (2020) 11

J. E. Stone, et al., Application of a Limit-Cycle Oscillator Model for Prediction of Circadian Phase in Rotating Night Shift Workers, Scientific Reports 9 (2019) 11032

T. L. Leise and M. E. Harrington, Wavelet-based time series analysis of Circadian rhythms, Journal of Biological Rhythms 26 (2011) 454

I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, 1992).

N.E.HuangandZ.Wu

M.DätigandT.Schlurmann

H. Modell, et al., A physiologist’s view of homeostasis, Ad- vances in Physiology Education 39 (2015) 259

A.SeelyandP.TMacklem,SeeleyAJE,MacklemPTComplex systems and the technology of variability analysis, Critical care 8 (2005) R367

D. Iatsenko, P. V. McClintock, and A. Stefanovska, Linear and synchrosqueezed time-frequency representations revisited: Overview, standards of use, resolution, reconstruction, concen- tration, and algorithms, Digital Signal Processing: A Review Journal 42 (2015) 1

K. A. Thomas and R. L. Burr, Circadian research in mothers and infants: how many days of actigraphy data are needed to fit cosinor parameters?, J Nurs Meas 16 (2008) 201

E. Bedrosian, A product theorem for Hilbert transforms, Pro- ceedings of the IEEE 51 (1963) 868

Y.-C. Chen, M.-Y. Cheng, and H.-T. Wu, Non-parametric and adaptive modelling of dynamic periodicity and trend with het- eroscedastic and dependent errors, Journal of the Royal Sta- tistical Society: Series B (Statistical Methodology) 76 (2014) 651

T. O’Haver, A Pragmatic Introduction to Signal Processing. 103. T. C. O’Haver, An introduction to signal processing in chem-

ical measurement, Journal of chemical education 67 (1990)

D. Johnson, Fundamentals of Electrical Engineering I (2008).

T. Butz, Fourier transformation for pedestrians (2006).

O. Marques, Practical Image and Video Processing Using MATLAB® (John Wiley & Sons, Inc., Hoboken, 2011).

J. Newman, G. Lancaster, and A. Stefanovska, Multiscale Os- cillatory Dynamics Analysis User Manual (2017)

Downloads

Published

2023-09-01

How to Cite

[1]
L. García-Iglesias, A. L. . Rivera, and R. Fossion, “Circadian cycles: A time-series approach”, Rev. Mex. Fís., vol. 69, no. 5 Sep-Oct, pp. 051101 1–, Sep. 2023.