Design, construction and robust validation of a germicidal device based on UV irradiation: a necessity for hospital disinfection in the COVID-19 era

Authors

  • Ismael Martínez-Ramírez Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional
  • Clemente Cruz-Cruz Hospital Juárez de México
  • Adolfo López Ornelas Hospital Juárez de México
  • Emilio Mariano Duran-Manuel Hospital Juárez de México
  • Enrique Estudillo Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”
  • Iván Velasco Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”
  • Miguel Angel Loyola-Cruz Hospital Juárez de México
  • Patricia Gutiérrez Zayas-Bazán Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional
  • Jesús López López-Vargas Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional
  • Yesenia Godínez-Cruz Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional
  • Miguel Tufiño Velázquez Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional
  • Gabriela Ibáñez Cervantes Hospital Juárez de México
  • Juan Manuel Bello López Hospital Juárez de México
  • Gerardo Silverio Contreras-Puente Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional

DOI:

https://doi.org/10.31349/RevMexFis.70.010901

Keywords:

UV light; SARS-CoV-2; ESKAPE bacteria; fungi; disinfection

Abstract

Pandemic by SARS-CoV-2 has revealed the importance of disinfection methods due to pathogens of medical importance being detectable and infective after several hours on contaminated surfaces, including medical devices. The aim of this work was to design, construction, and validation of a UVC light irradiation system in the short wavelength region (200 to 320 nm). We studied the effective of the system through in vitro disinfection to eliminate pathogens such as SARS-CoV-2, ESKAPE bacteria and fungi in biofilm and planktonic forms. Doses of 0.25 J/cm2 (10 s of exposure to UVC light), 100% death of ESKAPE bacteria and fungi in planktonic form was observed. Through biofilm formation induction assays of these microorganisms showed resistance to treatment with UV light; however, their viability was not detected after 20 s of exposure (via confocal microscopy). For SARS-CoV-2, 100% reduction was reached after 120 s of exposure. This evidence shows the need to employ emerging methods of disinfection of surfaces and medical devices since these are potential vehicles for transmitting pathogens. The advantages of using UV light as an emergent disinfection method in the era of COVID-19 are discussed.

References

K. Bispo-dos-Santos et al., Ultraviolet germicidal irradiation is effective against SARS-CoV-2 in contaminated makeup powder and lipstick. J. Photochem Photobiol. 8 (2021) 100072

S. Srivastava, X. Zhao, A. Manay, Q. Chen, Effective ventilation and air disinfection system for reducing coronavirus disease 2019 (COVID-19) infection risk in office buildings. Sustain Cities Soc. (2021) 75

F. P. Sellera, C. P. Sabino, F. V. Cabral, and M. S. Ribeiro, A systematic scoping review of ultraviolet C (UVC) light systems for SARS-CoV-2 inactivation. J. Photochem. Photobiol. 8 (2021) 100068

E. Criscuolo et al., Fast inactivation of SARS-CoV-2 by UVC and ozone exposure on different materials. Emerg Microbes Infect. 10 (2021) 206-10

S. Narayanan et al., Disinfection and Electrostatic Recovery of N95 Respirators by Corona Discharge for Safe Reuse. Environ Sci Technol. 55 (2021) 15351-60

Y. Huang, S. Xiao, D. Song, Z. Yuan, Evaluating the virucidal activity of four disinfectants against SARS-CoV-2. Am J Infect Control. 50 (2022) 319-24

P. Shrestha, J. W. DeGraw, M. Zhang, X. Liu, Multizonal modeling of SARS-CoV-2 aerosol dispersion in a virtual office building. Build and Environ. 206 (2021) 108347

P. F. Horve, L. Dietz, D. Northcutt, J. Stenson, K. van den Wymelenberg. Evaluation of a bioaerosol sampler for indoor environmental surveillance of Severe Acute Respiratory Syndrome Coronavirus 2. PLoS One. 16 (2021) e0257689

Y. Liu et al., Stability of SARS-CoV-2 on environmental surfaces and in human excreta. J. Hosp. Infect. 107 (2021) 105

H. William, H. Syracuse and R. J. Hennick Cayuga, STERILIZATION APPARATUS, Patent Number USOO82O3124B2, Date of Patent Jun. 19, (2012). https://patentimages.storage.googleapis.com/c6/c0/23/f64038027aa4ed/US8203124.pdf

C. E. Hunter, D. G. Narayan, L. E. McNeil, and J. H. Hebrank, METHODS AND APPARATUS FOR ULTRAVOLET STERILIZATION, Number patent US 2006O147339A1, Date of Patent Jul. 6, 2006. https://patents.google.com/patent/US20060147339A1/en?q=(sterilization+apparatus+uv)&oq=sterilization+apparatus+uv

Report for analysis, Guangdong detection center of microbiology, number report 2020FM05977R01E, verification code 30921548, www.gddcm.com

G. Kampf et al., Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of hospital infection 104 (2020) 246-251

K. Wang et al., Risk of air and surface contamination of SARS-CoV-2 in isolation wards and its relationship with patient and environmental characteristics. Ecotoxicol Environ Saf. 241 (2022) 113740. https://doi.org/10.1016/j.ecoenv.2022.113740

G. Correia et al., SARS-CoV-2 air and surface contamination in residential settings. Sci Rep. 12 (2022) 18058.10.1038/s41598- 022-22679-y

X. Zhang et al., Monitoring SARS-CoV-2 in air and on surfaces and estimating infection risk in buildings and buses on a university campus. J Expo Sci Environ Epidemiol. 32 (2022) 751-758.10.1038/s41370-022-00442-9

J. Biryukov et al., Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces. mSphere. (2020) 5

A. Kratzel et al., Temperature-dependent surface stability of SARS-CoV-2. J Infect. 81 (2020) 452-82

N. Van Doremalen et al., Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 382 (2020) 1564-7

E. M. Duran-Manuel ´ et al., Clonal dispersion of Acinetobacter baumannii in an intensive care unit designed to patients COVID-19. J Infect Dev Ctries. 15 (2021) 58-68

E. K. Jeong, J. E. Bae, and I. S. Kim, Inactivation of influenza A virus H1N1 by disinfection process. Am J Infect. Control. 38 (2010) 354-60

J. Choi, M. Lee, Y. Lee, Y. Song, Y. Cho, and T. Lim, Effectiveness of Plasma-Treated Hydrogen Peroxide Mist Disinfection in Various Hospital Environments. Int J Environ Res Public Health. 18 (2021) 9841

V. Monzillo et al., Ozonized Gel Against Four Candida Species A Pilot Study and Clinical Perspectives. Materials. (2020) 13

G. Franke et al., An automated room disinfection system using ozone is highly active against surrogates for SARS-CoV-2. J Hosp Infect. 112 (2021) 108-13

T. L. Wiemken et al., Evaluation of the effectiveness of improved hydrogen peroxide in the operating room. Am J Infect Control. 42 (2014) 1004-5

A. Darge, A. G. Kahsay, H. Hailekiros, S. Niguse, and M. Abdulkader, Bacterial contamination and antimicrobial susceptibility patterns of intensive care units medical equipment and inanimate surfaces at Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia. BMC Res Notes. (2019) 12

G. Kac et al., Evaluation of a new disinfection procedure for ultrasound probes using ultraviolet light. J Hosp Infect. 65 (2007) 163-8

J. M. Jennings et al., A back table ultraviolet light decreases environmental contamination during operative cases. Am J Infect Control. (2021) S0196-6553(21)00640-4

T. E. Meawed, S. M. Ahmed, S. M. S. Mowafy, G.M. Samir and R. H. Anis, Bacterial and fungal ventilator associated pneumonia in critically ill COVID-19 patients during the second wave. J Infect Public Health. 14 (2021) 1375-80. 30. https://www.Conbioetica.Mexico.Salud.Gob.Mx/Descargas/Pdf/Normatividad/Normatinacional/10.NAL.Reglamento de Investigacion.Pdf

T. Liu, Digital-Output Relative Humidity & Temperature Sensor/Module DHT22 (DHT22 Also Named as AM2302) Capacitive-Type Humidity and Temperature Module/Sensor

M. A. Cureño-Díaz et al., Impact of the modification of a cleaning and disinfection method of mechanical ventilators of COVID-19 patients and ventilator-associated pneumonia One year of experience. Am J Infect Control. 49 (2021) 1474-80

J. Rodríguez-Baño et al., Biofilm Formation in Acinetobacter baumannii Associated Features and Clinical Implications. Clin Microbiol Infect 14 (2008) 276-278

M. Gulati et al., In Vitro Culturing and Screening of Candida albicans Biofilms. Curr Protoc Microbiol (2018) 50

G. Ibáñez-Cervantes et al., Ozone as an Alternative Decontamination Process for N95 Facemask and Biosafety Gowns. Mater Lett (2022) 311

S. M. Hirabara et al., SARS-COV-2 Variants Differences and Potential of Immune Evasion. Front Cell Infect Microbiol. 11 (2022) 1401

A. Rouze and S. Nseir Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia and VentilatorAssociated Tracheobronchitis in COVID-19. Semin Respir Crit Care Med. 43 (2022) 243-247

B. Kayaaslan et al., Incidence and risk factors for COVID19 associated candidemia (CAC) in ICU patients. Mycoses. 65 (2022) 508-516

M. Biasin, et al., UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Scientific Reports 11 (2021) 6260. https://doi.org/10.1038/s41598-021-85425-w

R. T. Robinson et al., UV222 disinfection of SARS-CoV2 in solution. Scientific Reports 12 (2022) 14545. https://doi.org/10.1038/s41598-022-18385-4

B. Ma, P. M. Gundy, C. P. Gerba, M. D. Sobsey, and K. G. Linden, UV Inactivation of SARS-CoV-2 across the UVC Spectrum KrCl* Excimer, Mercury-Vapor, and Light-EmittingDiode (LED) Sources. Appl Environ Microbiol. (2021) 87

S. J. Boegel et al., Robust Evaluation of Ultraviolet-C Sensitivity for SARS-CoV-2 and Surrogate Coronaviruses. Microbiol Spectr. (2021) 9

C. Russo et al., Effect of a UV-C Automatic Last-Generation Mobile Robotic System on Multi-Drug Resistant Pathogens. Int J Environ Res Public Health. (2021) 18

L. Hazell, F. Allan, A. M. Emery, and M. R. Templeton, Ultraviolet disinfection of Schistosoma mansoni cercariae in water. PLOS Negle Trop Dis. 15 (2021) e0009572

S. Debnath, Low Cost Homemade System to Disinfect Food Items from SARS-CoV-2. J Med Syst. (2020) 44

S. H. Rakib et al., Design and Development of a low cost Ultraviolet Disinfection system to reduce the cross infection of SARS-CoV-2 in ambulances. Proceedings of International Conference on Electronics, Communications and Information Technology, ICECIT (2021)

G. Zhang et al., Ultraviolet Light-Degradation Behavior and Antibacterial Activity of Polypropylene/ZnO Nanoparticles Fibers. Polymers 11 (2019) 1841

M. Raeiszadeh, and B. Adeli, A Critical Review on Ultraviolet Disinfection Systems against COVID-19 Outbreak Applicability, Validation, and Safety Considerations. ACS Photonics. 7 (2020) 2941-51

H. Mamane-Gravetz, K. G. Linden, A. Cabaj, and R. Sommer Spectral sensitivity of Bacillus subtilis spores and MS2 coliphage for validation testing of ultraviolet reactors for water disinfection. Environ Sci Technol 39 (2005) 7845-7852

F. Barancheshme, J. Philibert, Noam-Amar N, Y. Gerchman and B. Barbeau, Assessment of saliva interference with UVbased disinfection technologies. J Photochem Photobiol B Biol, 217 (2021) 112168

H. Y. Buse, J. S. Hall, G. L. Hunter, and J. A. Goodrich, Differences in UV-C LED Inactivation of Legionella pneumophila Serogroups in Drinking Water. Microorganisms. 10 (2022) 352

A. Argyraki et al., UV light assisted antibiotics for eradication of in vitro biofilms. Sci Rep. 8 (2018) 1-9

C. B. Lineback, C. A. Nkemngong, S. T. Wu, X. Li, P. J. Teska, H. F. Oliver, Hydrogen Peroxide and Sodium Hypochlorite Disinfectants Are More Effective against Staphylococcus aureus and Pseudomonas aeruginosa Biofilms than Quaternary Ammonium Compounds. Antimicrob Resist Infect Control 7 (2018) 1-7

Downloads

Published

2024-01-03

How to Cite

[1]
I. Martínez-Ramírez, “Design, construction and robust validation of a germicidal device based on UV irradiation: a necessity for hospital disinfection in the COVID-19 era”, Rev. Mex. Fís., vol. 70, no. 1 Jan-Feb, pp. 010901 1–, Jan. 2024.