Solitary wave type solutions of nonlinear improved mKdV equation by modified techniques

Authors

  • R. K. Alhefthi King Saud University
  • Muhammad Ishfaq Khan
  • Jamilu Sabi’u
  • Dil Nawaz Khan Marwat
  • Mustafa Inc Firat University

DOI:

https://doi.org/10.31349/RevMexFis.70.051301

Keywords:

IMSSEM and IGREMM; improved mKdV equation; solitary wave solution; NLPDEs

Abstract

In this paper, the improved and modified version of the Sardar sub-equation method (IMSSEM) and the improved generalized Riccati equation mapping method (IGREMM) are manipulated effectively and generously to determine the exact solitary wave soliton solutions of the improved modified KdV (mKdV) equation. The purpose of this study is to provide novel exact solutions to the improved mKdV equation. Specifically, we utilized IMSSEM and IGREMM to study different solutions of the nonlinear improved mKdV equation, focusing on exponential, trigonometric, and trigonometric hyperbolic type solutions. Furthermore, the plotting of various solutions for direct viewing analysis is provided in two and three-dimensional graphs. The new strategies are straightforward, quick, and efficient and have many other advantages, whereas, they provide the most accurate and unique solution to many other types of nonlinear partial differential equations (NPDEs), which usually arise in engineering and applied sciences. It should be noted that these methodologies are novel mathematical instruments that have shown to be the most effective mathematical tools for solving higher-order nonlinear partial differential equations in mathematical physics. Symbolic computation was used to validate all of the solutions that were established. Thus, it is also hoped that these techniques will ultimately reduce the cumbersome workload involved during the process of solutions to complicated NLPDEs.

References

A.M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput. 188 (2007) 1467, https://doi.org/10.1016/j.amc.2006.11.013

A. M. Wazwaz, The tanh-coth method for new compactons and solitons solutions for the K (n, n) and the K (n+1, n+1) equations, Appl Math. Comput. 188 (2007) 1930, https://doi.org/10.1016/j.amc.2006.11.076

A. M. Wazwaz, The sine-cosine method for obtaining solutions with compact and noncompact structures, Appl. Math. Comput. 159 (2004) 559, https://doi.org/10.1016/j.amc.2003.08.136

A, M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Model. 40 (2004) 499, https://doi.org/10.1016/j.mcm.2003.12.010

N. Raza, M. R. Aslam, H. Rezazadeh, Analytical study of resonant optical solitons with variable coefficients in Kerr and nonKerr law media, Optic Quant Electron. 51 (2019) 59, https://doi.org/10.1007/s11082-019-1773-4

N. Raza, A. Javid, Optical dark and dark-singular soliton solutions of (1+2) dimensional chiral nonlinear Schrodinger’s equation, Waves Random Comp Media. 29 (2019) 496, https://doi.org/10.1080/17455030.2018.1451009

M. M. Khater, A. R. Seadawy, D. Lu, Dispersive optical soliton solutions for higher order nonlinear Sasa-Satsuma equation in mono mode fibers via new auxiliary equation method, Serlattices Microstruct. 113 (2018) 346, https://doi.org/10.1016/j.spmi.2017.11.011

H. Rezazadeh, A. Korkmaz, M. Eslami, S. M. MirhosseiniAlizamini, A large family of optical solutions to KunduEckhaus model by a new auxiliary equation method, Optic Quant Electron. 51 (2019) 84, https://doi.org/10.1007/s11082-019-1801-4

E. C. Aslan, M. Inc, Optical soliton solutions of the NLSE with quadratic-cubic Hamiltonian perturbations and modulation instability analysis, Optik. 196 (2019) 162661, https://doi.org/10.1016/j.ijleo.2019.04.008

Z. Korpinar, M. Inc, M. Bayram, M. S. Hashemi, New optical solitons for Biswas– Arshed equation with higher order dispersions and full nonlinearity. Optik. 206 (2019) 163332, https://doi.org/10.1016/j.ijleo.2019.163332

I. K. Muhammad, A. Saleem, S. Jamilu, Jacobi Elliptic Function Expansion Method for the Improved Modified kortwedge-de Vries equation, Optical and Quantum Electronics 54 (2022) 734, https://doi.org/10.1007/s11082-022-04109-5

J. Sabi’u, A. Jibril, A. M. Gadu, New exact solution for the (3+ 1) conformable space-time fractional modified Kortewegde-Vries equations via Sine-Cosine Method. Journal of Taibah University for Science, 13 (2019) 91, https://doi.org/10.1080/16583655.2018.1537642

G. Tao, J. Sabi’u, S. Nestor, R. M. El-Shiekh, L. Akinyemi, E. Az-Zo’bi, G. Betchewe, Dynamics of a new class of solitary wave structures in telecommunications systems via a (2+ 1)- dimensional nonlinear transmission line. Modern Physics Letters B, 36 (2022) 2150596, https://doi.org/10.1142/S0217984921505965

A. M. Wazwaz, The Hirota’s direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation, Appl Math Comput. 199 (2008) 133, https://doi.org/10.1016/j.amc.2007.09.034

A. M. Wazwaz, The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves, Appl Math Comput. 201 (2008) 489, https://doi.org/10.1016/j.amc.2007.12.037

W. Gao, H. Rezazadeh, Z. Pinar, H. M. Baskonus, S. Sarwar, G. Yel, Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Optic Quant Electron. 52 (2020) 1, https://doi.org/10.1007/s11082-019-2162-8

H. Rezazadeh, New solitons solutions of the complex Ginzburg Landau equation with Kerr law nonlinearity, Optik. 167 (2018) 218, https://doi.org/10.1016/j.ijleo.2018.04.026

A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu, Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fiber, Front Phys. 7 (2019) 34, https://doi.org/10.3389/fphy.2019.00034

A. Yusuf, M. Inc, D. Baleanu, Optical solitons with Mtruncated and beta derivatives in nonlinear optics. Front Phys. 7 (2019) 126, https://doi.org/10.3389/fphy.2019.00126

Y. C¸ enesiz, O. Tasbozan, A. Kurt, Functional Variable Method for conformable fractional modifed KdV-ZK equation and Maccari system, Tbilisi Math J. 10 (2017) 117, https://doi.org/10.1515/tmj-2017-0010

M. Eslami, H. Rezazadeh, M. Rezazadeh, S. S. Mosavi, Exact solutions to the space-time fractional Schrödinger-Hirota equation and the space-time modifed KDV-Zakharov-Kuznetsov equation, Optic Quant Electron. 49 (2017) 279, https://doi.org/10.1007/s11082-017-1112-6

S. Nestor, A. Houwe, H. Rezazadeh, A. Bekir, G. Betchewe, S. Y. Doka, New solitary waves for the Klein-Gordon-Zakharov equations, Modern Phys Lett B. 60 (2020) 324, https://doi.org/10.1142/S0217984920502462

A. Houwe, J. Sabi’u, G. Betchewe, M. Inc, S. Y. Doka, Modulation analysis and optical solitons of perturbed nonlinear Schrödinger equation. Rev. Mex. Fis. 67 (2021) 040705, https://doi.org/10.31349/RevMexFis.67.040705

S. Nestor, S. Abbagari, A. Houwe, G. Betchewe, S. Y. Doka, Diverse chirped optical solitons and new complex traveling waves in nonlinear optical fibers, Commun Theor Phys. 72 (2020) 065501, https://doi.org/10.1088/1572-9494/ab7ecd

A. Houwe, S. Abbagari, M. Inc, G. Betchewe, S. Y. Doka, Crepin, et al. Chirped solitons in discrete electrical transmis- ´ sion line, Results Phys. 18 (2020) 103188, https://doi.org/10.1016/j.rinp.2020.103188

C. Park et al., Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher-order dispersive cubic quintic, Alexandria Eng J. 59 (2020) 1425, https://doi.org/10.1016/j.aej.2020.03.046

M. Alquran, A. Jarrah, Jacobi elliptic function solutions for a two-mode KdV equation, J. King Saud Univ Sci. 31 (2019) 485, https://doi.org/10.1016/j.jksus.2017.06.010

H. M. Jaradat, M. Syam, M. Alquran, A two-mode coupled Korteweg-de Vries: multiple-soliton solutions and other exact solutions, Nonlinear Dyn. 90 (2017) 371, https://doi.org/10.1007/s11071-017-3668-x

M. Alquran, H. M. Jaradat, M. I. Syam, A modified approach for a reliable study of new nonlinear equation: two-mode Korteweg-de Vries-Burgers equation, Nonlinear Dyn. 91 (2018) 1619, https://doi.org/10.1007/s11071-017-3968-1

H. M. Jaradat, F. Awawdeh, S. Al-Shara, M. Alquran,S. Momani, Controllable dynamical behaviors and the analysis of fractal burgers hierarchy with the full effects of inhomogeneities of media, Rom. J. Phys. 60 (2015) 324

M. Syam, H. M. Jaradat, M. Alquran, A study on the twomode coled modified Korteweg-de Vries using the simplified bilinear and the trigonometric-function methods, Nonlinear Dyn. 90 (2017) 1363, https://doi.org/10.1007/s11071-017-3732-6

M. Alquran, H. M. Jaradat, S. Al-Shara, F. Awawdeh, A new simplied bilinear method for the N-soliton solutions for a generalized F mKdV equation with time-dependent variable coefficients, Int J Nonlinear Sci Numer Simul. 16 (2015) 259, https://doi.org/10.1515/ijnsns-2014-0023

H. Rezazadeh, J. Vahidi, A. Zafar, A. Bekir, The functional variable method to find new exact solutions of the nonlinear evolution equations with dual-power-law nonlinearity, Int J Nonlinear Sci Numer Simul. 21 (2020) 249, https://doi.org/10.1515/ijnsns-2019-0064

H. Yépez-Martínez, J. F. Gomez-Aguilar, Fractional sub equation method for Hirota-Satsuma-coled KdV equation and coled mKdV equation using theAtangana’s conformable derivative, Waves Ran. Comp. Med. 29 (2019) 678, https://doi.org/10.1080/17455030.2018.1464233

J. Sabi’u, M. Inc, T. D. Leta, D. Baleanu, H. Rezazadeh, Dynamical behaviour of the Joseph-Egri equation. Thermal Science, 27 (2023) 19, https://doi.org/10.2298/TSCI23S1019S

H. Yépez-Martínez, J. F. Gomez-Aguilar, M-derivative applied to the soliton solutions for the Lakshmanan-PorsezianDaniel equation with dual-dispersion for optical fibers, Optical Quant Electron. 51 (2019) 31, https://doi.org/10.1007/s11082-018-1740-5

L. Akinyemi, Two improved techniques for the perturbed nonlinear Biswas-Milovic equation and its optical solutions, Optik 243 (2021) 167477, https://doi.org/10.1016/j.ijleo.2021.167477

Downloads

Published

2024-09-01

How to Cite

[1]
R. K. Alhefthi, M. I. . Khan, J. . Sabi’u, D. N. K. . Marwat, and M. Inc, “Solitary wave type solutions of nonlinear improved mKdV equation by modified techniques ”, Rev. Mex. Fís., vol. 70, no. 5 Sep-Oct, pp. 051301 1–, Sep. 2024.