Computational investigation of elastic properties of hypothetical Half-Heusler compounds XNbSn under hydrostatic pressures


  • R. M. Shabara Taibah University
  • B. O. Alsobhi Taibah University



Half- Heusler; elastic properties; pressure effect; mechanical stability; XNbSn


We investigated the electronic, elastic, and magnetic properties of the hypothetical half- Heusler alloys with Niobium base atom, XNbSn with (X= Cr, Mn, Co, Fe, V) uses the full-potential (linearized) augmented plane-wave and local-orbitals [FP-(L)APW + lo] basis set in the WIEN2K ab-initio package based on density functional theory (DFT). We investigated the elastic constants, Shear modulus, young modulus, and bulk modulus of these alloys under different pressures (0, 20, 40, and 80 GPa). We predicted that CoNbSn behaves as a semiconductor with a direct energy gap of 0.99 eV, while the other half- Heusler alloys show a metallic behavior. CoNbSn keeps its semiconductor behavior under higher pressures up to 80 GPa. Both of VNbSn and CrNbSn have a high value of magnetic moments of 2.158 and 3.002 µB respectively. All XNbSn alloys are stable mechanically at different pressures according to the Born-Huang conditions. CoNbSn, FeNbSn, CrNbSn, and MnNbSn behave as a ductile material at ambient pressure.



T. Gottschall, E. Stern-Taulats, L. Maosa, A. Planes, and K.P. Skokov, Reversibility of minor hysteresis loops in magnetocaloric Heusler alloys. Appl. Phys. Lett. 110 (2017) 223904,

R. Masrour, A. Jabar, and E.K. Hlil, Modeling of the magnetocaloric effect in Heusler Ni2MnGa alloy: Ab initio calculations and Monte Carlo simulations. Intermetallics, 91 (2017) 120,

Y. Chieda, T. Kanomata, K. Fukushima, K. Matsubayashi, Y. Uwatoko, and R. Kainuma, Magnetic properties of Mn-rich Ni2MnSn Heusler alloys under pressure. J. Alloys Compd, 486 (2009) 55,

B.M. Wang et al., Strong thermal-history-dependent magnetoresistance behavior in Ni49.5Mn34.5In16. J. Appl. Phys. 106 (2009) 063909,

S. H. Aly, and R. M. Shabara, First principles calculation of elastic and magnetic properties of Cr-based full-Heusler alloys. J. Mag. and Mag. Mat., 360 (2014) 143,

R. M. Shabara and B. O. Alsobhi, Calculations of structural, elastic and magnetic properties of the novel full Heusler alloys Ru2XY (X = Nb, Mn) and (Y = Te, Sb), JETP Lett, 113 (2021) 322,

R. M. Shabara, High pressure effect on structural, electronic and elastic properties of topological half-Heusler LaPdBi compound. Mater. Res. Express, 4 (2017) 086511,

A. G. Kiiamov, M.D. Kuznetsov, R.G. Batulin, and D. A. Tayurskii, On the ab initio Calculations within DFT+ U Approach of Physical Properties of a Compound with Strong Electron-Electron Correlations by the Case of KFeS2. JETP Lett. 115 (2022) 98,

A. Bouazza, M. Khirat, M. Larbi, N. Bettaher, and D. Rached, Structural, mechanical, electronic, thermal, and optical properties of the inverse-Heusler compounds X2RuPb (X = La, Sc): A first-principles investigation. Rev. Mex. Fis, 69 (2023) 050501,

R. J. Quinn, and J. W. G. Bos, Advances in half-Heusler alloys for thermoelectric power generation. Materials advances, 2 (2021) 6246,

A. Q. Seh, and D. C. Gupta, Quaternary Heusler Alloys a Future Perspective for Revolutionizing Conventional Semiconductor Technology. J. alloys and Comp, 871 (2021) 159560,

H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science, 281 (1998) 951,

M. Jimbo, S. Hirano, K. Meguro, S. Tsunashima and S.Uchiyama, Giant Magnetoresistance with Low Saturation Field in Ni14Fe13Co73/Cu Multilayers. Jpn. J. Appl. Phys, 33 (1994) 850,

S. Mitani, Magnetic Tunnel Junctions Using Heusler Alloys. In: Felser, C., Hirohata, A. (eds) Heusler Alloys. Springer Series in Materials Science, vol 222. (Springer, Cham, 2016)

S. Okamura, A. Miyazaki, S. Sugimoto, N. Tezuka, and K. Inomata, Large tunnel magnetoresistance at room temperature with a Co2FeAl full-Heusler alloy electrode. Appl. Phys. Lett. 86 (2005) 232503,

T. Kubota, Z. Wen, and K. Takanashi, Temperature dependence of current-perpendicular-to-plane giant magnetoresistance in the junctions with interface tailored Heusler alloy electrodes, J. Magn. Magn. Mat, 7 (2019) 165667,

B. Yan, and A. de Visser, Half-heusler topological insulators. MRS Bulletin, 39 (2014) 859,

T. Graf, P. Klaer, J. Barth, B. Balke, H.J. Elmers and C. Felser, Scr. Mater. 63 (2010) 1216,

A. Roy, J. W. Bennett, K. M. Rabe and D. Vanderbilt, Half-Heusler Semiconductors as Piezoelectrics. Phys. Rev. Lett, 109 (2012) 037602,

D. Kieven, R. Klenk, S. Naghavi, C Felser and T. Gruhn, I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations. Phys. Rev. B, 81 (2010) 075208,

W. Li, G. Yang, and J. Zhang, Optimization of the thermoelectric properties of FeNbSb-based half-Heusler materials. J. Physics D: Applied Phys, 49 (2016) 195601,

A. A. Musari, Electronic, mechanical, vibrational and thermodynamic properties of FeXSb (X = Hf and Nb) HalfHeusler alloys from first-principles approach. Solid State Sciences, 122 (2021) 106755,

D. K. Yadav, S. R. Bhandari, and G. C. Kaphle, Structural, elastic, electronic, and magnetic properties of MnNbZ (Z = As, Sb) and FeNbZ (Z = Sn, Pb) semi-Heusler alloys Mater. Res. Express, 7 (2020) 116527,

E. L. Habbak, R. M. Shabara, S. H. Aly, and S. Yehia, Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure. Physica B: condensed Matter 494 (2016) 63,

J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 33 (1986) 8822,

D. C. Langreth, and J.P. Perdew, Theory of nonuniform electronic systems. Phys. Rev. B, 21 (1980) 5469,

R. G. Parr, S. R. Gadre, and L. J. Bartolotti, Local density functional theory of atoms and molecules, Proc. NatI. Acad. Sci. 76 (1979) 2522,

S. Lundqvist, N. H. March, Theory of the Inhomogenous Electron Gas, Plenum, (New York, 1983)

P. Blaha, K. Schwarz, P. I. Sorantin and S. B. Tricky, Fullpotential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59 (1990) 399,

F. D. Murnaghan, The Compressibility of Media under Extreme Pressures. Acad. Sci. 30 (1944) 244, https://doi:10.1073/pnas.30.9.244

F. Birch, Finite Elastic Strain of Cubic Crystals. Phys. Rev. 71 (1947) 809,

J. Wang, S. Yip, S. R. Phillpot, and D. Wolf, Crystal instabilities at finite strain. Phys. Rev. Lett. 71 (1993) 4182,

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1956)

B. Mayer, H. Anton, E. Bott, M. Methfessel. J. Sticht, and P. Schmidt, Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. C.: Intermetallics. 11 (2003) 23,

S. Pugh, The London, Edinburgh, and Dublin. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. Philosophical Magazine and Journal of Science, 45 (1954) 823,




How to Cite

reham shabara and B. O. Alsobhi, “Computational investigation of elastic properties of hypothetical Half-Heusler compounds XNbSn under hydrostatic pressures”, Rev. Mex. Fís., vol. 70, no. 4 Jul-Aug, pp. 041002 1–9, Jul. 2024.