Spin moment cancelation of high Curie temperature Ir doped ZrO2 gradual atomic change

Authors

  • Zakaryaa Zarhri CONACYT-Tecnológico Nacional de México/I.T. Chetumal https://orcid.org/0000-0001-8542-060X
  • O. Oubram Universidad Autónoma del Estado de Morelos
  • L. Cisneros Villalobos Universidad Autónoma del Estado de Morelos
  • V. A. Leon Hernández Universidad Autónoma del Estado de Morelos

DOI:

https://doi.org/10.31349/RevMexFis.69.041601

Keywords:

DFT calculations; spin and orbital moment cancelation; Ir-doped ZrO2; spintronics

Abstract

This paper presents the structural, magnetic properties, and spin moment cancelation phenomenon of the zirconium oxide with a gradual change of zirconium for Iridium. The density functional theory (DFT) is shown to be a key feature of magnetic properties of solid materials treatment.  It is shown that a small adjustment of the spin moment (less than 6%) is allowed. The Zr1-xIrxO2 crystal structure deformation leads to a magnetic compensation that occurs at x=0.06. Spin and orbital moments behaviors are discussed. The stability of the alloy compounds is confirmed by energy calculations. The material presents ferromagnetic stability and an indirect exchange coupling with a hybridization effect that permitted the evolution from a non-magnetic to a host material with magnetic properties. The Ir orbitals are set at the Fermi level and are spin polarized which indicates a half metallic behavior then makes the material a good candidate for spintronics’ applications.

Author Biography

Zakaryaa Zarhri, CONACYT-Tecnológico Nacional de México/I.T. Chetumal

Ph.D. in computational physics applied to materials sciences, i actually work as Catedra CONCYT in the technological institute of Chetumal city. I'm author and co-author of more than 24 international indexed articles and participated in numerous international conferences and summer schools around the world. I speak five languages (English, French, Spanish, Arabic and Moroccan). Of my fields of researches i can mention: material sciences, solid state physics, simulation and modeling of materials physical properties, condensed matter, construction and renewable energies.

References

C. Klingshirn, Introduction to semiconductor quantum structures: Semiconductor Quantum Structures, Growth and Structuring (2013) 1, https://doi.org/10.1007/978-3-540-68357-5_1

A. Hirohata et al., Review on spintronics: Principles and device applications, Journal of Magnetism and Magnetic Materials 509 (2020) 166711, https://doi.org/10.1016/j.jmmm.2020.166711

Z. Mahdavifar and F. Shojaei, CdInGaS4: An unexplored twodimensional materials with desirable band gap for optoelectronic devices, Journal of Alloys and Compounds 854 (2021) 157220, https://doi.org/10.1016/j.jallcom.2020.157220

Z. Zarhri et al., Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects, Journal of Magnetism and Magnetic Materials 406 (2016) 212, https://doi.org/10.1016/j.jmmm.2016.01.029

M. Plonus, Electronics and communications for scientists and engineers (Butterworth-Heinemann, 2020), https://doi.org/10.1016/C2018-0-00442-9

D. Shi, Nanomaterials and devices (Elsevier, 2014), https://doi.org/10.1016/C2012-0-03204-8

Z. Zarhri et al., Magnetic properties of transition metaldoped CdSe, Journal of Superconductivity and Novel Magnetism 28 (2015) 2155, https://doi.org/10.1007/s10948-015-2986-9

S. Pearton et al., Ferromagnetism in transition-metal doped ZnO, Journal of Electronic Materials 36 (2007) 462, https://doi.org/10.1016/S1386-9477(01)00093-5

T. Fukumura, H. Toyosaki, and Y. Yamada, Magnetic oxide semiconductors, Semiconductor Science and Technology 20 (2005) S103, https://doi.org/10.1007/978-94-007-6892-5_22

Z. A. Devizorova et al., Interface contributions to the spin-orbit interaction parameters of electrons at the (001) GaAs/AlGaAs interface, JETP letters 100 (2014) 102, https://doi.org/10.1134/S0021364014140033

U. C. Mendes et al., Electronic and optical properties of InGaAs quantum wells with Mn-delta-doping GaAs barriers, arXiv preprint arXiv:1509.07136 (2015), https://doi.org/10.48550/arXiv.1509.07136

S. A. Steiner III et al., Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single-and multiwall carbon nanotubes, Journal of the American Chemical Society 131 (2009) 12144, https://doi.org/10.1021/ja902913r

Z. Xiao et al., Materials development and potential applications of transparent ceramics: A review, Materials Science and Engineering: R: Reports 139 (2020) 100518, https://doi.org/10.1016/j.mser.2019.100518

M. Boujnah et al., Magnetic and electronic properties of point defects in ZrO 2, Journal of superconductivity and novel magnetism 26 (2013) 2429, https://doi.org/10.1007/s10948-012-1826-4

L. Zeng et al., Molecular beam epitaxial growth of latticematched ZnxCdyMg1- x- ySe quaternaries on InP substrates, Journal of crystal growth 175 (1997) 541, https://doi.org/10.1016/S0022-0248(96)00873-1

P. Huang et al., Photoluminescence and contactless electroreflectance characterization of BexCd1- xSe alloys, Journal of Physics: Condensed Matter 19 (2006) 026208, https://10.1088/0953-8984/19/2/026208

H. Masui and S. Nakamura, White Light-emitting Diodes, Encyclopedia of Materials: Science and Technology (2010)

E. Stefanovich, A. L. Shluger, and C. Catlow, Theoretical study of the stabilization of cubic-phase ZrO 2 by impurities, Physical Review B 49 (1994) 11560, https://doi.org/10.1103/physrevb.49.11560

Y. Ziat et al., Computational study of the magnetic and electronic properties of the LiMgN (Vc1-xZx) and LiMg (N1-xZx) alloys where Z is B, C or S, Computational Condensed Matter 25 (2020) e00502, https://doi.org/10.1016/j.cocom.2020.e00502

M. Saint-Cricq, ModAlisation des coefficients de transport thermoAlectriques des alliages métalliques multicomposants, Ph.D. thesis, Universite Grenoble Alpes (2020)

Y. Ziat et al., Ferrimagnetism and ferromagnetism behavior in (C, Mn) co-doped SnO2 for microwave and spintronic: Ab initio investigation, Journal of Magnetism and Magnetic Materials 483 (2019) 219, https://doi.org/10.1016/j.jmmm.2019.03.084

E. Grza¸dka and J. Matusiak, Changes in the CMC/ZrO2 system properties in the presence of hydrocarbon, fluorocarbon and silicone surfactants, Journal of Molecular Liquids 303 (2020) 112699, https://doi.org/10.1016/j.molliq.2020.112699

I. Kuryliszyn-Kudelska et al., Adjusting the magnetic properties of ZrO2: Mn nanocrystals by changing hydrothermal synthesis conditions, Magnetochemistry 4 (2018) 28, https://doi.org/10.3390/magnetochemistry4020028

F. Gallino, C. Di Valentin, and G. Pacchioni, Band gap engineering of bulk ZrO 2 by Ti doping, Physical Chemistry Chemical Physics 13 (2011) 17667, https://doi.org/10.1039/C1CP21987A

P. Borlido et al., Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning, npj Computational Materials 6 (2020) 96, https://doi.org/10.1038/s41524-020-00360-0

F. A. Kröger and N. H. Nachtrieb, The chemistry of imperfect crystals, Physics Today 17 (1964) 66, https://doi.org/10.1063/1.3051186

Z. Zarhri et al., Titanium atoms dimerization phenomenon and magnetic properties of titanium-antisite (TiO) and chromium doped rutile TiO2, ab-initio calculation, Journal of Physics and Chemistry of Solids 94 (2016) 12, https://doi.org/10.1016/j.jpcs.2016.03.002

Z. Zarhri, A. Benyoussef, and A. El Kenz, Theoretical study of TiO2 doped with single and double impurities, Journal of Superconductivity and Novel Magnetism 27 (2014) 1323, https://doi.org/10.1007/s10948-013-2439-2

C. Lin et al., Hybridization effects-The evolution from nonmagnetic to magnetic behavior in uranium-based systems, Journal of the Less Common Metals 133 (1987) 67, https://doi.org/10.1016/0022-5088(87)90461-9

E. Coronado, B. Tsukerblat, and R. Georges, Exchange interactions I: mechanisms, Molecular magnetism: from molecular assemblies to the devices (1996) 65, https://doi.org/10.1007/978-94-017-2319-0 3

Y. Ziat et al., First-Principles Study of Magnetic and Electronic Properties of Fluorine-Doped Sn 0. 9 8 Mn 0. 0 2 O 2 System, Journal of Superconductivity and Novel Magnetism 29 (2016) 2979, https://doi.org/10.1007/s10948-016-3609-9

G. Gao et al., Half-metallic ferromagnetism of Cr-doped rutile TiO2: A first-principles pseudopotential study, Physica B: Condensed Matter 382 (2006) 14, https://doi.org/10.1016/j.physb.2006.01.501

R. Wood, Spin-polarons and high-Tc superconductivity, Tech. rep., Oak Ridge National Lab., TN (United States) (1994), https://doi.org/10.2172/10158128

P. Söderlind, Cancellation of spin and orbital magnetic moments in δ-Pu: Theory, Journal of alloys and compounds 444 (2007) 93, https://doi.org/10.1016/j.jallcom.2006.10.084

A. Ilyushin et al., The phenomenon of magnetic compensation in the multi-component compounds (Tb, Y, Sm) Fe2 and their hydrides, Journal of Alloys and Compounds 847 (2020) 155976, https://doi.org/10.1016/j.jallcom.2020.155976

M. Shahjahan, I. Razzakul, and M. Rahman, First-principles calculation of stable magnetic state and Curie temperature in transition metal doped III-V semiconductors, Computational Condensed Matter 9 (2016) 67, https://doi.org/10.1016/j.cocom.2016.10.001

M. Morinaga, H. Adachi, and M. Tsukada, Electronic structure and phase stability of ZrO2, Journal of Physics and Chemistry of Solids 44 (1983) 301, https://doi.org/10.1016/0022-3697(83)90098-7

Downloads

Published

2023-07-04

How to Cite

[1]
Z. Zarhri, O. Oubram, L. Cisneros Villalobos, and V. A. Leon Hernández, “Spin moment cancelation of high Curie temperature Ir doped ZrO2 gradual atomic change”, Rev. Mex. Fís., vol. 69, no. 4 Jul-Aug, pp. 041601 1–, Jul. 2023.