Flat bands, quantum Hall effect and superconductivity in twisted bilayer graphene at magic angles
DOI:
https://doi.org/10.31349/RevMexFis.69.041602Keywords:
Twisted bilayer graphene, Quantum Hall Effect, electron-electron, HamiltonianAbstract
Flat band electronic modes are responsible for superconductivity in twisted bilayer graphene (TBG) rotated at magic angles. From there other magic angles can be found for any multilayered twisted graphene systems. Eventually, this lead to the discovery of the highest ever known electron-electron correlated material. Moreover, the quantum phase diagram of TBG is akin to those observed among high-Tc superconductors and thus there is a huge research effort to understand TBG in the hope of clarifying the physics behind such strong correlations. A particularity of the TBG is the coexistence of superconductivity and the fractional Quantum Hall effect, yet this relationship is not understood. In this work, a simple 2 × 2 matrix model for TBG is introduced. It contains the magic angles and due to the intrinsic chiral symmetry in TBG, a lowest energy level related to the quantum Hall effect. The non-Abelian properties of this Hamiltonian play a central role in the electronic localization to produce the flat bands and here it is proved that the squared Hamiltonian of the chiral TBG model is equivalent to a single electron Hamiltonian inside of a non-Abelian pseudo-magnetic field produced by electrons in other layers. Therefore, the basic and fundamental elements in the physics of magic angles are determined. In particular, a study is made on these fundamental energy contributions at the Γ-point due to its relation to the recurrence of magic angles and its relationship with the Quantum Hall effect.
References
Y. Cao et al., Nature 556 (2018) 43.
M. Yankowitz et al., Science 363 (2019) 1059.
A. Kerelsky, L. McGilly, and D. e. a. Kennes, Nature 572 (2019) 95.
E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Rev. Mod. Phys. 87 (2015) 457.
G. Deutscher, Rev. Mod. Phys. 77 (2005) 109.
E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Rev. Mod. Phys. 87 (2015) 457.
M. Fidrysiak, M. Zegrodnik, and J. Spa lek, Phys. Rev. B 98 (2018) 085436.
B. Roy and V. Juricic,´ Phys. Rev. B 99 (2019) 121407.
F. Wu and S. Das Sarma, Phys. Rev. B 99 (2019) 220507.
J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P. JarilloHerrero, arXiv e-prints, arXiv:2012.01434 (2020).
E. Khalaf, S. Chatterjee, N. Bultinck, M. P. Zaletel, and A. Vishwanath, arXiv e-prints, arXiv:2004.00638 (2020).
E. Khalaf and A. Vishwanath, Nature Communications 11 (2022) 6245.
P. J. Ledwith, E. Khalaf, and A. Vishwanath, Annals of Physics (2021) 168646.
M. Oh et al., Nature (London) 600 (2021) 240.
J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P. JarilloHerrero, arXiv e-prints, arXiv:2012.01434 (2020).
P. J. Ledwith, A. Vishwanath, and D. E. Parker, arXiv e-prints, arXiv:2209.15023 (2022).
Y. Xie et al., Nature (London) 600 (2021) 439.
J. M. B. L. dos Santos, N. M. R. Peres, and A. H. C. Neto, Phys. Rev. Lett. 99 (2007) 256802.
R. Bistritzer and A. H. MacDonald, Proceedings of the National Academy of Sciences 108 (2011) 12233.
G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Phys. Rev. Lett. 122 (2019) 106405.
J. Wang, Y. Zheng, A. J. Millis, and J. Cano, arXiv e-prints, arXiv:2010.03589 (2020).
F. K. Popov and A. Milekhin, arXiv e-prints, arXiv:2010.02915 (2020).
K. Hejazi, C. Liu, and L. Balents, Phys. Rev. B 100 (2019) 035115.
A. Uri et al., Nature (London) 581 (2020) 47.
N. Benlakhouy, A. Jellal, H. Bahlouli, and M. Vogl, Phys. Rev. B 105 (2022) 125423.
G. G. Naumis, L. A., Navarro-Labastida, E. Aguilar-Mendez, Abdiel, and Espinosa-Champo, Phys. Rev. B 103 (2021) 245418.
L. A. Navarro-Labastida, A. Espinosa-Champo, E. AguilarMendez, and G. G. Naumis, Phys. Rev. B 105 (2022) 115434.
L. A. Navarro-Labastida and G. G. Naumis, Phys. Rev. B 107 (2023) 155428, https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.155428.
G. G. Naumis, Rev. Mex. Fis. 67 (2021) 1.
Eslam, Khalaf, A. J., Kruchkov, Grigory, Tarnopolsky, Ashvin, and Vishwanath, Phys. Rev. B 100 (2019) 085109.
Patrick, J., Ledwith, Grigory, Tarnopolsky, Eslam, Khalaf, Ashvin, and Vishwanath, Phys. Rev. Research 2 (2020) 023237.
G. G. Naumis, R. A. Barrio, and C. Wang, Phys. Rev. B 50 (1994) 9834.
T. Mizoguchi, Y. Kuno, and Y. Hatsugai, Phys. Rev. A 102 (2020) 033527.
K. Roychowdhury, J. Attig, S. Trebst, and M. J. Lawler, arXiv e-prints, arXiv:2207.09475 (2022).
T. Mizoguchi and Y. Hatsugai, arXiv e-prints, arXiv:2208.10764 (2022).
T. Mizoguchi, T. Yoshida, and Y. Hatsugai, Phys. Rev. B 103 (2021) 045136.
X. Peng, H. Zhou, B.-B. Wei, J. Cui, J. Du, and R.-B. Liu, Phys. Rev. Lett. 114 (2015) 010601.
Y. Ashida, Z. Gong, and M. Ueda, Advances in Physics 69 (2020) 249, https://doi.org/10.1080/00018732.2021.1876991.
C. Lyu, C. Lv, and Q. Zhou, Phys. Rev. Lett. 125 (2020) 253401.
P. San-Jose, J. Gonzalez, and F. Guinea, Phys. Rev. Lett. 108 (2012) 216802.
S. Becker, M. Embree, J. Wittsten, and M. Zworski, arXiv eprints, arXiv:2008.08489 (2020).
W. Roscoe B., Asymptotic Analysis of Differential Equations (Imperial College Press, 2010).
S. M. Girvin and K. Yang, Modern Condensed Matter Physics (Cambridge University Press, 2019).
A. Ramires and J. L. Lado, Phys. Rev. Lett. 121 (2018) 146801.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Leonardo Antonio Navarro Labastida, G. G. Naumis
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.