Magneto-transport behavior of disordered three dimensional NixCo1−x inverse opal networks

Authors

  • Hiram Eli Torres Soto Instituto de Investigaciones en Materiales - Unidad Morelia, Universidad Nacional Autónoma de México
  • Flavio Abreu Araujo Institute of Condensed Matter and Nanosciences, Université catholique de Louvain https://orcid.org/0000-0001-7157-3197
  • Joaquín de la Torre Medina Instituto de Investigaciones en Materiales - Unidad Morelia, Universidad Nacional Autónoma de México https://orcid.org/0000-0002-7014-8073

DOI:

https://doi.org/10.31349/RevMexFis.69.041603

Keywords:

Inverse opals; Magnetoresistance; Electrodeposition; PMMA nanoparticles

Abstract

Herein we report on the magneto-transport properties of disordered three dimensional inverse opals (3D-IOs) fabricated by a standard three-probe electrodeposition technique into the interstices of porous membranes made of 150 nm diameter self assembled poly(methyl methacrylate) spheres. This approach has allowed the synthesis of large scale nanocomposites with exact ferromagnetic NixCo1−x alloy compositions and complex interconnected structure. Particularly, the microstructure of Co-rich 3D-IOs is consistent with the hexagonal close packed hcp texture and its corresponding magnetoresistance is explained in terms of the hcp Co magnetocrystalline anisotropy contribution. Conversely, the magnetoresistive behavior of Ni-rich 3D-IO networks is explained in terms of only their magnetostatic field. The control of these features is made possible by the reduced dimensions of necks and walls, in the 40 nm to 60 nm range, of the 3D-IO structure. Despite the disordered morphology of these 3D-IO nanoarchitectures, their microstructural and magneto-transport properties can be fine tuned due to the reduced nanoscale dimensions of the electrical interconnections. These properties have been found to be comparable to those obtained in other 3D networks, making them interesting systems for their potential use for magnetic sensing and spintronic applications.

References

L. Zhang et al., Dynamic domain motion of thermalmagnetically formed marks on CoNi/Pt multilayers, Journal of Applied Physics 100 (2006) 053901.

G. Hrkac, J. Dean, and D. A. Allwood, Nanowire spintronics for storage class memories and logic, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 369 (2011) 3214.

E. Spada et al., Anisotropic magnetoresistance in electrodeposited cobalt antidot arrays, Journal of Magnetism and Magnetic Materials 320 (2008) e253, https://doi.org/10.1016/j.jmmm.2008.02.057.

M. Coïsson et al., Anisotropic magneto-resistance in Ni80Fe20 antidot arrays with different lattice configurations, Applied Surface Science 316 (2014) 380, https://doi.org/10.1016/j.apsusc.2014.08.014.

S. H. Skjærvø et al., Advances in artificial spin ice, Nature Reviews Physics 2 (2020) 13, https://doi.org/10.1038/s42254-019-0118-3.

A. Fernández-Pacheco et al., Three-dimensional nanomagnetism, Nat. Commun. 8 (2017) 1, https://doi.org/10.1038/ncomms15756.

K. Gu et al., Three-dimensional racetrack memory devices designed from freestanding magnetic heterostructures, Nat. Nanotechnol. 17 (2022) 1065, https://doi.org/10.1038/s41565-022-01213-1.

D. J. Shir et al., Three-Dimensional Nanofabrication with Elastomeric Phase Masks, The Journal of Physical Chemistry B 111 (2007) 12945, https://doi.org/10.1021/jp074093j.

K. Shehzad et al., Three-dimensional macro-structures of twodimensional nanomaterials, Chem. Soc. Rev. 45 (2016) 5541, https://doi.org/10.1039/C6CS00218H.

X. Wang, M. Ahmad, and H. Sun, Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications, Materials 10 (2017), https://doi.org/10.3390/ma10111304.

P. Fischer et al., Launching a new dimension with 3D magnetic nanostructures, APL Materials 8 (2020) 010701, https://doi.org/10.1063/1.5134474.

B. Luo and L. Zhi, Design and construction of three dimensional graphene-based composites for lithium ion battery applications, Energy Environ. Sci. 8 (2015) 456, https://doi.org/10.1039/C4EE02578D.

J. Grollier et al., Neuromorphic spintronics, Nature Electronics 3 (2020) 360, https://doi.org/10.1038/s41928-019-0360-9.

T. da Câmara Santa Clara Gomes et al., Magneto-Transport in Flexible 3D Networks Made of Interconnected Magnetic Nanowires and Nanotubes, Nanomaterials 21 (2021) 221, https://doi.org/10.3390/nano11010221.

E. C. Burks et al., 3D Nanomagnetism in Low Density Interconnected Nanowire Networks, Nano Letters 21 (2021) 716, https://doi.org/10.1021/acs.nanolett.0c04366.

G. Guan et al., Composition design and performance regulation of three-dimensional interconnected FeNi@carbon nanofibers as ultra-lightweight and high efficiency electromagnetic wave absorbers, Carbon 197 (2022) 494, https://doi.org/10.1016/j.carbon.2022.07.005.

A. A. Bykov et al., Flux pinning mechanisms and a vortex phase diagram of tin-based inverse opals, Supercond. Sci. Technol. 32 (2019) 115004, https://doi.org/10.1088/1361-6668/ab3db7.

L. Wu et al., Hierarchically structured porous materials: synthesis strategies and applications in energy storage, National Science Review 7 (2020) 1667, https://doi.org/10.1093/nsr/nwaa183.

E. Armstrong et al., Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries, ACS Applied Materials & Interfaces 7 (2015) 27006, https://doi.org/10.1021/acsami.5b09511.

Z. Liu et al., Three-dimensional ordered porous electrode materials for electrochemical energy storage, NPG Asia Materials 11 (2019) 12, https://doi.org/10.1038/s41427-019-0112-3.

Y. zhen Liu et al., Removal of gaseous pollutants by using 3DOM-based catalysts: A review, Chemosphere 262 (2021) 127886, https://doi.org/10.1016/j.chemosphere.2020.127886.

G. D. Mahan, N. Poilvert, and V. H. Crespi, Thermoelectric properties of inverse opals, Journal of Applied Physics 119 (2016) 075101, https://doi.org/10.1063/1.4941784.

L. Zhang, E. Reisner, and J. J. Baumberg, Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation, Energy Environ. Sci. 7 (2014) 1402, https://doi.org/10.1039/C3EE44031A.

J. Hou, M. Li, and Y. Song, Patterned Colloidal Photonic Crystals, Angewandte Chemie International Edition 57 (2018) 2544, https://doi.org/10.1002/anie.201704752.

M. Dabrowski et al., Facile Fabrication of Surface-Imprinted Macroporous Films for Chemosensing of Human Chorionic Gonadotropin Hormone, ACS Applied Materials & Interfaces 11 (2019) 9265, https://doi.org/10.1021/acsami.8b17951.

Y.-J. Huang et al., A facile approach to fabricate Ni inverse opals at controlled thickness, Mater. Lett. 63 (2009) 2393, https://doi.org/10.1016/j.matlet.2009.08.030.

S. O’Hanlon, D. McNulty, and C. O’Dwyer, The Influence of Colloidal Opal Template and Substrate Type on 3D Macroporous Single and Binary Vanadium Oxide Inverse Opal Electrodeposition, J. Electrochem. Soc. 164 (2017) D111, https://doi.org/10.1149/2.0121704jes.

E. Armstrong et al., 3D Vanadium Oxide Inverse Opal Growth by Electrodeposition, J. Electrochem. Soc. 162 (2015) D605, https://doi.org/10.1149/2.0541514jes.

N. Sapoletova et al., Controlled growth of metallic inverse opals by electrodeposition, Phys. Chem. Chem. Phys. 12 (2010) 15414, https://doi.org/10.1039/C0CP00812E.

C. Zhang et al., In Situ Dual-Template Method of Synthesis of Inverse-Opal Co3O4@TiO2 withWideband Microwave Absorption, Inorg. Chem. 60 (2021) 18455, https://doi.org/10.1021/acs.inorgchem.1c03035.

N. A. Grigoryeva, A. A. Mistonov, and S. V. Grigoriev, SmallAngle Neutron Diffraction for Studying Ferromagnetic Inverse Opal-Like Structures, Crystallogr. Rep. 67 (2022) 93, https://doi.org/10.1134/S1063774522010060.

D. Van Opdenbosch et al., An Experiment-Based Numerical Treatment of Spin Wave Modes in Periodically Porous Materials, Phys. Status Solidi B 257 (2020) 1900296, https://doi.org/10.1002/pssb.201900296.

L. Wang et al., Linear magnetoresistance in three-dimensional carbon nanostructure with periodic spherical voids, Appl. Phys. Lett. 107 (2015) 023103, https://doi.org/10.1063/1.4926606.

D. Apalkov, B. Dieny, and J. M. Slaughter, Magnetoresistive Random Access Memory, Proc. IEEE 104 (2016) 1796, https://doi.org/10.1109/JPROC.2016.2590142.

M. E. Kiziroglou et al., Orientation and symmetry control of inverse sphere magnetic nanoarrays by guided self-assembly, Journal of Applied Physics 100 (2006) 113720, https://doi.org/10.1063/1.2386936.

T. da Câmara Santa Clara Gomes et al., Magnetic and Magnetoresistive Properties of 3D Interconnected NiCo Nanowire Networks, Nanoscale Res. Lett. 11 (2016) 1, https://doi.org/10.1186/s11671-016-1679-z.

M. Akin et al., Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application, Sensors 18 (2018) 4392, https://doi.org/10.3390/s18124392.

G. Williams et al., Two-photon lithography for 3D magnetic nanostructure fabrication, Nano Res. 11 (2018) 845, https://doi.org/10.1007/s12274-017-1694-0.

S. J. Limmer, S. V. Cruz, and G. Z. Cao, Films and nanorods of transparent conducting oxide ITO by a citric acid sol route, Applied Physics A 79 (2004) 421, https://doi.org/10.1007/s00339-004-2738-3.

S. Gu et al., Preparation of Micrometer-Sized Poly(methyl methacrylate) Particles with Amphoteric Initiator in Aqueous Media, Langmuir 20 (2004) 7948, https://doi.org/10.1021/la049280c.

S. H. Im et al., Three-Dimensional Self-Assembly of Colloids at a Water-Air Interface: A Novel Technique for the Fabrication of Photonic Bandgap Crystals, Advanced Materials 14 (2002) 1367, https://doi.org/10.1002/1521-4095(20021002)14:19h1367::AID-ADMA1367i3.0.CO;2-U.

M. Darques et al., Controlled changes in the microstructure and magnetic anisotropy in arrays of electrodeposited Co nanowires induced by the solution pH, Journal of Physics D: Applied Physics 37 (2004) 1411, https://doi.org/10.1088/0022-3727/37/10/001.

G. B. Tóth et al., Temperature dependence of the electrical resistivity and the anisotropic magnetoresistance (AMR) of electrodeposited Ni-Co alloys, The European Physical Journal B 75 (2010) 167.

G. Ali and M. Maqbool, Fabrication of cobalt-nickel binary nanowires in a highly ordered alumina template via AC electrodeposition, Nanoscale Research Letters 8 (2013) 1.

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd ed. (John Wiley & Sons, Inc., 2009).

T. McGuire and R. Potter, Anisotropic magnetoresistance in ferromagnetic 3d alloys, IEEE Transactions on Magnetics 11 (1975) 1018, 10.1109/TMAG.1975.1058782

N. V. Myung and K. Nobe, Electrodeposited Iron Group ThinFilm Alloys: Structure-Property Relationships, Journal of The Electrochemical Society 148 (2001) C136.

Downloads

Published

2023-07-04

How to Cite

[1]
H. E. Torres Soto, F. Abreu Araujo, and J. de la Torre Medina, “Magneto-transport behavior of disordered three dimensional NixCo1−x inverse opal networks”, Rev. Mex. Fís., vol. 69, no. 4 Jul-Aug, pp. 041603 1–, Jul. 2023.