Theoretical study of [111]-germanium nanowires as anode materials in rechargeable batteries: a density functional theory approach
DOI:
https://doi.org/10.31349/RevMexFis.69.031604Keywords:
Germanium nanowire, energy storage, anode materials, Density Functional TheoryAbstract
In this work, we present a Density Functional Theory (DFT) study of hydrogen-passivated germanium nanowires grown along the [111] crystallographic direction. The study is performed within the local density approximation (LDA) and the supercell technique. Four different diameters of nanowires were considered and the surface hydrogen atoms were replaced by Li ones using a sequential process. The results indicate that the nanowires have a semiconductor behaviour and the energy band gap diminishes when the number of Li atoms per unit cell increases. The formation energy results reveal that the Li atoms increase the stability of the Ge nanowires, and there is a charge transfer from the Li atoms to the surface Ge atoms. The open circuit voltage values are almost independent of the concentration of Li atoms. On the other hand, the lithium storage capacity results reveal that the Ge nanowires could be good candidates to be incorporated as anodic materials in the new generation of rechargeable batteries.
References
A González-Macías and F Salazar and A Miranda and A Trejo-Baños and L A Pérez and E Carvajal and M Cruz-Irisson, Lithium effects on the mechanical and electronic properties of germanium nanowires, Nanotechnology 29 (2018) 154004, https://dx.doi.org/10.1088/1361-6528/aaaad4
Siriny Laumier, Thomas Farrow, Harm van Zalinge, Luca Seravalli, Matteo Bosi, and Ian Sandall, Selection and Functionalization of Germanium Nanowires for Bio-Sensing, ACS Omega 7 (2022) 35288–35296, https://doi.org/10.1021/acsomega.2c04775
Sudarshan Singh, Subhrajit Mukherjee, Samik Mukherjee, Simone Assali, Lu Luo, Samaresh Das, Oussama Moutanabbir, and Samit K. Ray, Ge˘Ge0.92Sn0.08 core–shell single nanowire infrared photodetector with superior characteristics for on-chip optical communication, Appl. Phys. Lett. 120 (2022) 171110, https://doi.org/10.1063/5.0087379
Miranda A, de Santiago F, Pérez L A, Cruz-Irisson M, Silicon nanowires as potential gas sensors: a density functional study, Sens Actuators B. 242 (2017) 1246-1250, https://doi.org/10.1016/j.snb.2016.09.085
A.N. Sosa, F. de Santiago, A. Miranda, A. Trejo, F. Salazar, L.A. Pérez, M. Cruz-Irisson, Alkali and transition metal atom functionalized germanene for hydrogen storage: A DFT investigation, International Journal of Hydrogen Energy 46 (2021) 20245-20256, https://doi.org/10.1016/j.ijhydene.2020.04.129
A.N. Sosa, J.E. Santana, A. Miranda, L.A. Pérez, A.Trejo, F. Salazar, M. Cruz-Irisson, NH3 capture and detection by metal-decorated germanene: a DFT study, J Mater Sci 57 (2022) 8516–8529, https://doi.org/10.1007/s10853-022-06955-w
Sosa, AN, González, I, Trejo, A, Miranda, Á, Salazar, F, CruzIrisson, M, Effects of lithium on the electronic properties of porous Ge as anode material for batteries, J. Comput. Chem. 41 (2020) 2653– 2662, https://doi.org/10.1002/jcc.26421
Arellano, LG, Salazar, F, Miranda, Á, et al., Tunable electronic properties of silicon nanowires as sodium-battery anodes, Int J Energy Res. 46 (2022) 17151- 17162, https://doi.org/10.1002/er.8378
P.H. Jariwala and Y.A. Sonavane and P.B. Thakor and Sanjeev K. Gupta, Strain dependent electronic transport of pristine Si and Ge nanowires, Computational Materials Science 188 (2021) 110181, https://doi.org/10.1016/j.commatsci.2020.110181
H M Singh, B Choudhuri and P Chinnamuthu, Investigation of Optoelectronic Properties in Germanium Nanowire Integrated Silicon Substrate Using Kelvin Probe Force Microscopy, IEEE Transactions on nanotechnology 19 (2020) 628-634, https://ieeexplore.ieee.org/abstract/document/9145852
F De Santiago, J E González, A Miranda, A Trejo, F. Salazar, L A Péerez, M. Cruz-Irisson, Lithiation effects on the structural and electronic properties of Si nanowires as a potential anode material, Energy Storage Materials 20 (2019) 438–445, https://doi.org/10.1016/j.ensm.2019.04.023
Landi, Brian J. and Ganter, Matthew J. and Cress, Cory D. and DiLeo, Roberta A. and Raffaelle, Ryne P., Carbon nanotubes for lithium ion batteries, Energy Environ. Sci. 2 (2009) 638-654, http://dx.doi.org/10.1039/B904116H
Whittingham, M. Stanley, Materials Challenges Facing Electrical Energy Storage, MRS Bulletin 33 (2008) 411, https://doi.org/10.1557/mrs2008.82
Aricò A S, Bruce P, Scrosati B, Tarascon J M and Van Schalkwijk W, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. (2005) 4 366–77, https://doi.org/10.1038/nmat1368
Liu N, Li W, Pasta M and Cui Y, Nanomaterials for electrochemical energy storage, Front. Phys. (2014) 9 323–50, https://doi.org/10.1007/s11467-013-0408-7
Wu S, Han C, Iocozzia J, Lu M, Ge R, Xu R and Lin Z, Germanium-based nanomaterials for rechargeable batteries, Angew. Chem. Int. Ed. 55 (2016) 7898–922, https://doi.org/10.1002/anie.201509651
Chan C K, Zhang X F and Cui Y, High capacity Li ion battery anodes using Ge nanowires, Nano Lett. 8 (2008) 307–9, https://doi.org/10.1021/nl0727157
Chou C Y and Hwang G S, On the origin of anisotropic lithiation in crystalline silicon over germanium: a first principles study, Appl. Surf. Sci. (2014) 323 78–81, https://doi.org/10.1016/j.apsusc.2014.08.134
Liu X H, Liu Y, Kushima A, Zhang S, Zhu T, Li J and Huang J Y, In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures, Adv. Energy Mater. 2 (2012) 722–41, https://doi.org/10.1002/aenm.201200024
Graetz J, Ahn C C, Yazami R and Fultz B, Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities, J. Electrochem. Soc. 151( 2004) A698–702, https://iopscience.iop.org/article/10.1149/1.1697412
Kennedy T, Mullane E, Geaney H, Osiak M, O’Dwyer C and Ryan K M, High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network, Nano Lett. (2014) 14 716–23, https://doi.org/10.1021/nl403979s
McNulty, David Biswas, Subhajit Garvey, Shane O’Dwyer, Colm Holmes, Justin D, Directly Grown Germanium Nanowires from Stainless Steel: High- performing Anodes for Li-Ion Batteries, ACS Appl. Energy Mater. (2020) 3 11811–11819, https://dx.doi.org/10.1021/acsaem.0c01977
Adrià Garcia, Subhajit Biswas*, David McNulty, Ahin Roy, Sreyan Raha, Sigita Trabesinger, Valeria Nicolosi, Achintya Singha, and Justin D. Holmes, One-Step Grown Carbonaceous Germanium Nanowires and Their Application as Highly Efficient Lithium-Ion Battery Anodes, ACS Appl. Energy Mater. (2022), 5, 2, 1922–1932, https://doi.org/10.1021/acsaem.1c03404
R. Rurali, Colloquium: Structural, electronic, and transport properties of silicon nanowires, Rev. Mod. Phys. 82 (2010) 427, https://doi.org/10.1103/RevModPhys.82.427
Young-Dae Ko, Jin-Gu Kang, Gwang-Hee Lee, Jae-Gwan Park, Kyung-Soo Park, Yun-Ho Jinb and Dong-Wan Kim, Sn induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity, Nanoscale 3 (2011) 3371-3375, https://doi.org/10.1039/C1NR10471C
T. Hanrath and B. A. Korgel, Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals, J. Am. Chem. Soc. 124 (2002) 1424–1429, https://doi.org/10.1021/ja016788i
N. Troullier, J.L. Martins, Effient pseudopotentials for planewave calculations, Phys. Rev. B 43 (1991) 1993–2006, https://doi.org/10.1103/PhysRevB.43.1993
L. Kleinman, D.M. Bylander, Efficacious form for model pseudopotentials, Phys. Rev. Lett. 48 (1982) 1425–1428, https://doi.org/10.1103/PhysRevLett.48.1425
J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sáanchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys. Condens. Matter 14 (2002) 2745, https://doi.org/10.1088/0953-8984/14/11/302
C. Kittel, Introduction to Solid State Physics, 7th ed. (John Wiley & sons, New York,1996), pp. 23.
F. Salazar, L. A. Pérez, Theoretical study of electronic and mechanical properties of GeC nanowires, Comput. Mater.Sci. 63 (2012) 47–51, https://doi.org/10.1016/j.commatsci.2012.05.066
Monkhorst HJ, Pack JD, Special points for Brillouin-zone integrations, Phys Rev B. 13 (1976) 5188-5192, https://doi.org/10.1103/PhysRevB.13.5188
L G Arellano, F Salazar, A Trejo Baños, A Miranda, L A Pérez and M Cruz- Irisson, Electronic properties of [111] hydrogen passivated Ge nanowires with surface substitutional lithium, IOP Conf. Series: Materials Science and Engineering 840 (2020) 012004, https://dx.doi.org/10.1088/1757-899X/840/1/012004
C Fonseca Guerra, J W Handgraaf, E J Baerends, F M Bickelhaupt, Voronoi deformation density (VDD) charges: assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis, J. Comput. Chem. 25 (2004) 189–210, https://doi.org/10.1002/jcc.10351
He X, Tang A, Li Y, Zhang Y, Chen W, Huang S, Theoretical studies of SiC van der Waals heterostructures as anodes of Li-ion batteries, Appl Surf Sci. 563 (2021) 150269, https://doi.org/10.1016/j.apsusc.2021.150269
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ricardo Jiménez-Sánchez, Pedro Morales-Vergara, Fernando Salazar, Alvaro Miranda, Alejandro Trejo, Ivonne J. Hernández-Hernández, Luis Antonio Pérez, Miguel Cruz-Irisson
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.