Magnetostatic model for magnetic particle agregagates with cylindrical shapes

Authors

  • Victor Hugo Carrera-Escobedo Instituto Potosino de Investigación Científica y Tecnológica
  • Kevin Hintze-Madonado Instituto Potosino de Investigación Científica y Tecnológica
  • Armando Encinas-Oropesa IPICYT

DOI:

https://doi.org/10.31349/RevMexFis.69.041605

Keywords:

Nanoparticles; magnetostatic effects; soft magnetic particles

Abstract

Building micro and macro sized structures using compacted magnetic nanoparticles is a widely used approach that has proven a great potential as the basis for novel materials made by design. These materials are made by compactation of soft magnetic particles in the nano o micrometer sizes and their macroscopic properties are mostly governed by magnetostatic effects and the combination of the intervening shapes, namely those of the individual particles and that of the piece made with these particles. Herein a simplified mean-field model is presented to describe the magnetostatic effects in soft magnetic composites with cylindrical macroscopic shape made of densely packed ideal spherical soft magnetic particles. The model allows calculating the main magnetic parameters of the system as well as their most relevant tendencies as a function of its main parameters. Furthermore, the model has also been successfully applied to arrays of interacting macroscopic shapes, which provides a further controllable magnetic parameter.

References

E. A. Périgo, et al., Past, present, and future of soft magnetic composites, Appl. Phys. Rev. 5 (2018) 031301, 10.1063/1. 5027045

O. Gutfleisch, et al., Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient, Adv. Mater. 23 (2011) 821, 10.1002/adma.201002180

J. M. Silveyra, et al., Soft magnetic materials for a sustain- able and electrified world, Science 362 (2018) eaao0195, 10.1126/science.aao0195

P.S.Normile,etal.,Demagnetizationeffectsindensenanopar- ticle assemblies, Applied Physics Letters 109 (2016) 152404

B.Duong,etal.,EnhancedMagnetisminHighlyOrderedMag- netite Nanoparticle-Filled Nanohole Arrays, Small 10 (2014) 2840

Q. Li, et al., Enhanced magnetic performance of aligned wires assembled from nanoparticles: from nanoscale to macroscale, R. Soc. Open Sci. 7 (2020) 191656, 10.1098/rsos. 191656

V. Merk, et al., Hybrid Wood Materials with Mag- netic Anisotropy Dictated by the Hierarchical Cell Structure, ACS Appl. Mater. Interfaces 6 (2014) 9760, 10.1021/ am5021793

K. N. Al-Milaji, et al., Inkjet Printing of Magnetic Particles Toward Anisotropic Magnetic Properties, Sci. Rep. 9 (2019) 1, 10.1038/s41598- 019- 52699- 0

K. Deng, et al., Self-assembly of anisotropic nanoparticles into functional superstructures, Chem. Soc. Rev. 49 (2020) 6002, 10.1039/D0CS00541J

H. Gavilán, et al., How size, shape and assembly of mag- netic nanoparticles give rise to different hyperthermia scenar- ios, Nanoscale 13 (2021) 15631, 10.1039/D1NR03484G

E. H. Sánchez, et al., Crossover From Individual to Collective Magnetism in Dense Nanoparticle Systems: Local Anisotropy Versus Dipolar Interactions, Small 18 (2022) 2106762, 10. 1002/smll.202106762

S. Singh, Y. Mollet, and J. Gyselinck, Numerical Modeling of the Soft Magnetic Composite Material, In 2019 Electric Ve- hicles International Conference (EV), pp. 1–5 (IEEE, 2019), 10.1109/EV.2019.8894284.

J. M. Martinez-Huerta, et al., Configuration dependent demag- netizing field in assemblies of interacting magnetic particles, Journal of Physics: Condensed Matter 25 (2013) 226003

D. A. Weitz, Packing in the Spheres, Science 303 (2004) 968, https://doi.org/10.1126/science.1094581.

S. Li et al., Maximum packing densities of basic 3D objects, Chin. Sci. Bull. 55 (2010) 114, https://doi.org/10.1007/s11434-009-0650-0.

B.Nam,J.Kim,andK.KiHyeon,Analysisofeffectiveperme- ability behaviors of magnetic hollow fibers filled in composite, Journal of Applied Physics 111 (2012) 07E347

M. Sato and Y. Ishii, Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder, Journal of Applied Physics 66 (1989) 983

Y. Velázquez-Galván, et al., Dipolar interaction in arrays of magnetic nanotubes, Journal of Physics: Condensed Matter 26 (2013) 026001

Y. Velázquez-Galván and A. Encinas, Analytical magnetostatic model for 2D arrays of interacting magnetic nanowires and nan- otubes, Physical Chemistry Chemical Physics 22 (2020) 13320

S. Pal, et al., Carbon nanostraws: nanotubes filled with superparamagnetic nanoparticles, Nanotechnology 20 (2009) 485604, https://doi.org/10.1088/0957-4484/20/48/485604.

J. S. Segmehl, et al., Magnetic wood by in situ synthesis of iron oxide nanoparticles via a microwave-assisted route, J. Mater. Chem. C 6 (2018) 3395, 10.1039/C7TC05849G

G. J. Strijkers, et al., Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina, J. Appl. Phys. 86 (1999) 5141, https://doi.org/10.1063/1.371490.

A. Encinas-Oropesa, et al., Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance, Phys. Rev. B 63 (2001) 104415, https://doi.org/10.1103/PhysRevB.63.104415.

G. Kartopu, et al., Size effects and origin of easy-axis in nickel nanowire arrays, J. Appl. Phys. 109 (2011) 033909, https://doi.org/10.1063/1.3531565.

B. Das, et al., Effect of aspect ratio on the magnetic properties of nickel nanowires, J. Appl. Phys. 103 (2008) 013908, https://doi.org/10.1063/1.2828026.

S. Khalid, R. Sharif, and Z. H. Shah, TAILORING OF MAGNETIC EASY AXIS OF NICKEL NANOWIRES BY VARYING DIAMETER, Surf. Rev. Lett. 23 (2016) 1650024, https://doi.org/10.1142/S0218625X16500244.

E. V. Tartakovskaya, M. Pardavi-Horvath, and M. Vazquez, Configurational spin reorientation phase transition in magnetic nanowire arrays, J. Magn. Magn. Mater. 322 (2010) 743, https://doi.org/10.1016/j.jmmm.2009.10.052.

M. P. Proenca et al., Co nanostructures in ordered templates: comparative FORC analysis, Nanotechnology 24 (2013) 475703, https://doi.org/10.1088/0957-4484/24/47/475703.

S. Alikhanzadeh-Arani, M. Almasi-Kashi, and A. Ramazani, Magnetic characterization of FeCo nanowire arrays by firstorder reversal curves, Curr. Appl. Phys. 13 (2013) 664, https://doi.org/10.1016/j.cap.2012.10.014.

Y. G. Velazquez, et al., Relation of the average interaction field with the coercive and interaction field distributions in First order reversal curve diagrams of nanowire arrays, Sci. Rep. 10 (2020) 1, https://doi.org/10.1038/s41598-020-78279-1.

S. Da Col, et al., Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition, Appl. Phys. Lett. 98 (2011) 112501, https://doi.org/10.1063/1.3562963.

Downloads

Published

2023-07-04

How to Cite

[1]
V. H. Carrera-Escobedo, K. Hintze-Madonado, and A. Encinas-Oropesa, “Magnetostatic model for magnetic particle agregagates with cylindrical shapes”, Rev. Mex. Fís., vol. 69, no. 4 Jul-Aug, pp. 041605 1–, Jul. 2023.