Electrochemical corrosion performance of copper and uniformly alloyed bronze and brass in 0.1 M NaCl solution

Authors

  • Akib Abdullah Khan Bangladesh University of Engineering and Technology
  • Samiul Kaiser Bangladesh University of Engineering and Technology
  • Salim Kaiser Bangladesh University of Engineering and Technology

DOI:

https://doi.org/10.31349/RevMexFis.69.051002

Keywords:

Cu-based alloys,, impedance, EIS, Tafel, microstructure

Abstract

The influence of Al and Zn by 10 wt.% as alloying elements on the electrochemical corrosion behaviour of Cu-based alloy in 0.1 M NaCl solution is examined. Results from both electrochemical impedance spectroscopy method and potentiodynamic techniques indicate that the corrosion occurred at a higher rate for Zn and Al added alloys than pure Cu, where Zn added alloy shows the worst corrosion performance. Copper forms stable a protective layer of Cu2O, and CuO, as a result, has a lower corrosion rate. In case of Al and Zn added alloys, dealloying, as well as dissolution of additional Al2O3 and ZnO are responsible for higher corrosion rates, respectively. The surfaces are investigated by optical and scanning electron microscopy. Phases of different intermetallics within the Cu matrix are identified in the etched optical micrographs of the experimental alloys. The optical images after corrosion depict layers of oxides on the surfaces where the Zn-added alloys are highly affected, followed by Al-added alloys and pure Cu. Increased amounts of internal damage to the surface of the Zn-added alloy are visible in the SEM images. The EDX spectrum not only supports the presence of oxide layers but also claims that Zn-containing particles are dissolved at a greater rate than Al.

References

J. A. Wharton et al., The corrosion of nickel-aluminium bronze in seawater, Corrosion Science, 47 (2005) 3336-3367. https://doi.org/10.1016/j.corsci.2005.05.053

K. Ding, L. Fan, M. Yu, W. Guo, J. Hou and C. Lin, Sea water corrosion behaviour of T2 and 12832 copper alloy materials in different sea areas, Corrosion Engineering, Science and Technology, 54 (2019) 476-484, https://doi.org/10.1080/1478422X.2019.1619289

Taher, Corrosion Behavior of Copper-Nickel Alloy in Marine Environment (Review Paper). Applied Mechanics and Materials, 799-800 (2015) 222-231, https://doi.org/10.4028/www.scientific.net/amm.799-800.222

D. E. Tyler and W. T. Black, Introduction to Copper and Copper Alloys, ASM International, Materials Park, Ohio, USA, 1990

S. Li, M. Fang, Z. Xiao, X. Meng, Q. Lei and Y. Jia, Effect of Cr addition on corrosion behavior of cupronickel alloy in 3.5 wt% NaCl solution, Journal of Materials Research and Technology, 22 (2023) 2222-2238, https://doi.org/10.1016/j.jmrt.2022.12.079

A. H. Tuthill, Guidelines for the Use of Copper Alloys in Seawater, Nickel Development Institute, Ontario, Canada (1987)

J. A. Rogers, Dispersion-Strengthened Copper Alloys with Useful Electrical and Mechanical Properties, Powder Metallurgy, 20 (1977) 212-220. https://doi.org/10.1179/pom.1977.20.4.212

G. Wang, R. Ma, M. Wan and F. Zhao, The Effect of Sr composition on the microstructure and mechanical properties of Al-Si-Zn filler for the brazing of AA6061, Materials Research Express, 9 (2022) 1-12. https://doi.org/10.1088/2053-1591/ac5776

D. J. Horton, H. Ha, L. L. Foster, H. J. Bindig and J. R. Scully, Tarnishing and Cu Ion release in Selected Copper-Base Alloys: Implications towards Antimicrobial Functionality, Electrochimica Acta, 169 (2015) 351-366. https://doi.org/10.1016/j.electacta.2015.04.001

D. Cicolin, M. Trueba and S. P. Trasatti, Effect of chloride concentration, pH and dissolved oxygen, on the repassivation of 6082-T6 Al alloy, Electrochimica Acta, 124 (2014) 27-35. https://doi.org/10.1016/j.electacta.2013.09.003

D. D. Macdonald, Cyclic Voltammetry of Copper Metal in Lithium Hydroxide Solution at Elevated Temperatures, Journal of The Electrochemical Society, 121 (1974) 651-656. https://doi.org/10.1002/Chin.197432035

F. Ciucci, Modeling electrochemical impedance spectroscopy, Current Opinion in Electrochemistry, 13 (2019) 132- 139. https://doi.org/10.1016/j.coelec.2018.12.003

M. A. Nur, A. A. Khan, S. D. Sharma and M. S. Kaiser, Electrochemical corrosion performance of Si-doped Al-based automotive alloy in 0.1 M NaCl solution, Journal of Electrochemical Science and Engineering, 12 (2022) 565-576. https://doi.org/10.5599/jese.1373

S. Kaiser and M. S. Kaiser, Wear Behavior of Commercial Pure Copper with Al and Zn under Dry, Wet and Corrosive Environment, J. Mater. Environ. Sci. 11 (2020) 551

D. Zhang, Y. Li, K. Feng, P. Zhu and G. Xu, Effect of Aging Temperature on Microstructure and Mechanical Property of Aluminium Brass, IOP Conference Series: Materials Science and Engineering, 452 (2018) 1-5. https://doi.org/10.3139/146.11034010.1088/1757-899X/452/2/022132

M. A. Bodude, I. Momohjimoh and R. N.Nnaji, Mechanical and Microstructural Evaluation of Plastically Deformed Brass, Materials Sciences and Applications, 6 (2015) 1137-1144. https://doi.org/10.4236/msa.2015.612112

E. Altuncu, S. Iric and F. Ustel, Wear-resistant intermetallic arc spray coatings, Materiali in Tehnologije, 46 (2012) 181-183. https://hdl.handle.net/20.500.12619/49789

M. Okayasu, T. Muranaga and A. Endo, Analysis of microstructural effects on mechanical properties of copper alloys”, Journal of Science: Advanced Materials and Devices, 2 (2017) 128-139. https://doi.org/10.1016/j.jsamd.2016.12.003

K. Kim, D. Kim, K. Park, M. Cho, S. Cho and H. Kwon, Effect of Intermetallic Compounds on the Thermal and Mechanical Properties of Al-Cu Composite Materials Fabricated by Spark Plasma Sintering, Materials (Basel), 12 (2019) 1-13, https://doi.org/10.3390/ma12091546

L. Dong, W. Chen, L. Hou, Y. Liu and Q. Luo, Metallurgical process analysis and microstructure characterization of the bonding interface of QAl9-4 aluminum bronze and 304 stainless steel composite materials, J. Mater. Process. Technol. 238 (2016) 325-332, https://doi.org/10.1016/j.jmatprotec.2016.07.041

D. Raju, A. R. Govindan, J. Subramanian, S. Ramachandran and S. Nair, Surface alloying of aluminium bronze with chromium: Processing, testing, and characterization, Mater. Today Proc. 27 (2020) 2191-2199, https://doi.org/10.1016/j.matpr.2019.09.094

H. L. Hong, Q. Wang, C. Dong and P. K. Liaw, Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys, Scientific Reports, 4 (2014) 1-4. https://doi.org/10.1038/srep07065

A. Esmaeili, H. R. Zareie Rajani, M. Sharbati, M. K. B. Givi and M. Shamanian, The role of rotation speed on intermetallic compounds formation and mechanical behavior of friction stir welded brass/aluminum 1050 couple, Intermetallics, 19 (2011) 1711-1719, https://doi.org/10.1016/j.intermet.2011.07.006

S. K. Jha, D. Balakumar and R. Paluchamy, Experimental analysis of microstructure and mechanical properties of copper and brass based alloys, International Journal of Automotive and Mechanical Engineering, 11 (2015) 2317-2331. https://doi.org/10.15282/ijame.11.2015.14.0195

Z. Barlas and H. Uzun, Microstructure and mechanical properties of friction stir butt welded dissimilar pure copper/brass alloy plates, International Journal of Materials Research, 101 (2010) 801-807. https://doi.org/10.3139/146.110340

S. A. R. Khan, M. A. Hossain, M. Al Nur and M. S. Kaiser, Electrochemical Corrosion Properties of Ternary Al and Quaternary Zr Added Bell Metal in 0.1M NaCl Solution, Journal of Mechanical Engineering Science and Technology, 5 (2021) 1-16. https://doi.org/10.17977/um016v5i12021p001

S. Choudhary, A. Garg and K. Mondal, Relation between open circuit potential and polarization resistance with rust and corrosion monitoring of mild steel, Journal of Materials Engineering and Performance, 25 (2016) 2969-2976. https://doi.org/10.1007/s11665-016-2112-6

J. Bessone, C. Mayer, K. Jüttner and W. J. Lorenz, AC-impedance measurements on aluminium barrier type oxide films, Electrochimica Acta, 28 (1983) 171-175. https://doi.org/10.1016/0013-4686(83)85105-6

A. M. Alfantazi, T. M. Ahmed and D. Tromans, Corrosion behavior of copper alloys in chloride media, Materials & Design, 30 (2009) 2425-2430, https://doi.org/10.1016/j.matdes.2008.10.015

B. G. Ateya, E. A. Ashour and S. M. Sayed, Stress Corrosion Behavior of α-Aluminum Bronze in Saline Water, Corrosion, 50 (1994) 20-25. https://doi.org/10.5006/1.3293490

S. Virtanen, H. Wojtas, P. Schmuki and H. Böhni, Passivity of High Corrosion Resistant Cu-Al-Sn Alloys, Journal of The Electrochemical Society, 140 (1993) 2786-2790. https://doi.org/10.1149/1.2220911

F. Mansfeld, G. Liu, H. Xiao, C. H. Tsai and B. J. Little, The corrosion behavior of copper alloys, stainless steels and titanium in seawater, Corrosion Science, 36 (1994) 2063- 2095. https://doi.org/10.1016/0010-938X(94)90008-6

R. F. North and M. J. Pryor, The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys, Corrosion Science, 10 (1970) 297-311. https://doi.org/10.1016/S0010-938X(70)80022-1

R. G. Blundy and M. J. Pryor, The potential dependence of reaction product composition on copper-nickel alloys, Corrosion Science, 12 (1972) 65-75. https://doi.org/10.1016/S0010-938X(72)90567-7

A. Palit and S. O. Pehkonen, Copper corrosion in distribution systems: evaluation of a homogeneous Cu2O film and a natural corrosion scale as corrosion inhibitors, Corrosion Science, 42 (2000) 1801-1822, https://doi.org/10.1016/S0010-938X(00)00024-X

S. Thomas, N. Birbilis, M. S. Venkatraman and I. S. Cole, Corrosion of Zinc as a Function of pH, CORROSION, 68 (2012) 1-9, https://doi.org/10.5006/1.3676630

G. Scampone and G. Timelli, Anodizing Al-Si Foundry Alloys: A Critical Review, Adv. Eng. Mater. 24 (2022) 1-14, https://doi.org/10.1002/adem.202101480

R. A. Buchanan and E. E. Stansbury, Electrochemical Corrosion, Handbook of Environmental Degradation of Materials, Elsevier, New York, USA (2005)

X. Li, S. Deng, H. Fu and G. Mu, Inhibition effect of 6-benzylaminopurine on the corrosion of cold rolled steel in H2SO4 solution, Corrosion Science, 51 (2009) 620- 634, https://doi.org/10.1016/j.corsci.2008.12.021

S. S. Wang et al., Effect of Cu Content and Aging Conditions on Pitting Corrosion Damage of 7xxx Series Aluminum Alloys, Journal of The Electrochemical Society, 162 (2015) 150-160. https://doi.org/10.1149/2.0301504jes

R. G. Buchheit, L. P. Montes, M. A. Martinez, J. Michael and P. F. Hlava, The Electrochemical Characteristics of Bulk-Synthesized Al2CuMg, Journal of The Electrochemical Society, 146 (1999) 4424-4428. https://doi.org/10.1149/1.1392654

R. G. Buchheit, A Compilation of Corrosion Potentials Reported for Intermetallic Phases in Aluminum Alloys, Journal of The Electrochemical Society, 142 (1995) 3994-3996. https://doi.org/10.1149/1.2048447

P. Zhou and K. Ogle, The Corrosion of Copper and Copper Alloys, in Encycl. Interfacial Chem., Elsevier, New York, USA (2018)

N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Ed., Oxford, UK, (1997)

A. H. Battez et al., CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants, Wear, 265 (2008) 422-428. https://doi.org/10.1016/j.wear.2007.11.013

G. Purcek et al., Microstructure and mechanical behavior of UFG copper processed by ECAP following different processing regimes, Philosophical Magazine, 92 (2012) 690-704. https://doi.org/10.1080/14786435.2011.634842

J. Hajek, A. Kriz, O. Chocholaty and D. Pakula, Effect of Heat Treatment on Microstructural Changes in Aluminium Bronze, Archives of Metallurgy and Materials, 61 (2016) 925-930. https://doi.org/10.1515/amm-2016-0210

C. N. Panagopoulos, E. P. Georgiou and K. Simeonidis, Lubricated wear behavior of leaded α + β brass, Tribology International, 50 (2012) 1-5. https://doi.org/10.1016/j.triboint.2011.12.016

Downloads

Published

2023-09-01

How to Cite

[1]
A. Abdullah Khan, S. Kaiser, and S. Kaiser, “Electrochemical corrosion performance of copper and uniformly alloyed bronze and brass in 0.1 M NaCl solution”, Rev. Mex. Fís., vol. 69, no. 5 Sep-Oct, pp. 051002 1–, Sep. 2023.