Wetting properties of thin films of exfoliated hexagonal boron nitride in different solvents

Authors

  • Selene Acosta Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí
  • Verónica Pérez Luna Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí
  • Gregorio Sánchez Balderas Instituto de Física, Universidad Autónoma de San Luis Potosí
  • Juan Manuel Hernández Meza Instituto de Física, Universidad Autónoma de San Luis Potosí
  • Bernardo Yáñez Soto CONACYT-Instituto de Física, Universidad Autónoma de San Luis Potosí
  • Mildred Quintana Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí

DOI:

https://doi.org/10.31349/RevMexFis.69.041607

Keywords:

Hexagonal Boron Nitride, Wettability, Roughness, Liquid-phase Exfoliation

Abstract

Hexagonal boron nitride (h-BN) is a 2D material with excellent properties, such as large band gap, high thermal and chemical stability, transparency, and high resistance to oxidation and corrosion. These properties make h-BN a suitable candidate to be used in the development of advanced coatings. However, as for other nanomaterials, tailor and control the properties of h-BN is a fundamental key for their application into several fields. Here, the wetting properties of h-BN when is exfoliated by ultrasonic cavitation in different solvents including isopropyl alcohol (IPA), dioxane (Dx), N-methyl pyrrolidone (NMP) and dimethyl formamide (DMF) were investigated. The wetting properties of the different h-BN materials were determined by measuring the water contact angle (WCA) of h-BN thin films deposited on silicon dioxide, different contact angles were observed for each sample, the different WCA values are explained by the differences in the structure and roughness of the thin film surfaces obtained just by changing the solvent during exfoliation. These surface properties were characterized by optic and transmission electronic microscopy (TEM) as well as atomic force microscopy (AFM).

References

L. Niu, J.N. Coleman, H. Zhang, H. Shin, M. Chhowalla, Z. Zheng, Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation, Small 12 (2016) 272. https://doi.org/10.1002/smll.201502207.

S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V. v. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7 (2013) 2898. https://doi.org/10.1021/NN400280C/ASSET/IMAGES/MEDIUM/NN-2013-00280C_0018.GIF.

R. Ma, T. Sasaki, Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality, Acc Chem Res 48 (2015) 136. https://doi.org/10.1021/AR500311W/ASSET/IMAGES/MEDIUM/AR-2014-00311W_0009.GIF.

L.H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, A.M. Glushenkov, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling, J Mater Chem. 21 (2011) 11862. https://doi.org/10.1039/C1JM11192B.

K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications, J Mater Chem C Mater 5 (2017) 11992. https://doi.org/10.1039/C7TC04300G.

Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications, Chem Soc Rev 45 (2016) 3989. https://doi.org/10.1039/C5CS00869G.

K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nature Materials 3 (2004) 404. https://doi.org/10.1038/nmat1134.

L. Hua Li, Y. Chen, B.M. Cheng, M.Y. Lin, S.L. Chou, Y.C. Peng, Photoluminescence of boron nitride nanosheets exfoliated by ball milling, Appl Phys Lett 100 (2012) 261108. https://doi.org/10.1063/1.4731203.

L. Li, L. Hua Li, Y. Chen, X.J. Dai, P.R. Lamb, B.-M. Cheng, M.-Y. Lin, X. Liu, L. Li, L.H. Li, Y. Chen, X.J. Dai, P.R. Lamb, X. Liu, B. Cheng, M. Lin, High-Quality Boron Nitride Nanoribbons: Unzipping during Nanotube Synthesis, Angewandte Chemie 125 (2013) 4306. https://doi.org/10.1002/ANGE.201209597.

L. Schué, B. Berini, A.C. Betz, B. Plaçais, F. Ducastelle, J. Barjon, A. Loiseau, Dimensionality effects on the luminescence properties of hBN, Nanoscale 8 (2016) 6986. https://doi.org/10.1039/C6NR01253A.

R. Bourrellier, S. Meuret, A. Tararan, O. Stéphan, M. Kociak, L.H.G. Tizei, A. Zobelli, Bright UV single photon emission at point defects in h-BN, Nano Lett 16 (2016) 4317. https://doi.org/10.1021/ACS.NANOLETT.6B01368/ASSET/IMAGES/MEDIUM/NL-2016-01368E_0004.GIF.

L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, Strong oxidation resistance of atomically thin boron nitride nanosheets, ACS Nano 8 (2014) 1457. https://doi.org/10.1021/NN500059S/SUPPL_FILE/NN500059S_SI_001.PDF.

L. Liu, S. Ryu, M.R. Tomasik, E. Stolyarova, N. Jung, M.S. Hybertsen, M.L. Steigerwald, L.E. Brus, G.W. Flynn, Graphene oxidation: Thickness-dependent etching and strong chemical doping, Nano Lett 8 (2008) 1965. https://doi.org/10.1021/NL0808684/SUPPL_FILE/NL0808684-FILE003.PDF.

I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride, Nano Lett 13 (2013) 550. https://doi.org/10.1021/NL304060G/SUPPL_FILE/NL304060G_SI_001.PDF.

M.T. Alam, M.S. Bresnehan, J.A. Robinson, M.A. Haque, Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films, Appl Phys Lett 104 (2014) 013113. https://doi.org/10.1063/1.4861468.

L.H. Li, Y. Chen, Atomically Thin Boron Nitride: Unique Properties and Applications, Adv Funct Mater 26 (2016) 2594. https://doi.org/10.1002/ADFM.201504606.

L.H. Li, T. Xing, Y. Chen, R. Jones, Boron Nitride Nanosheets for Metal Protection, Adv Mater Interfaces 1 (2014) 1300132. https://doi.org/10.1002/ADMI.201300132.

X. Li, J. Yin, J. Zhou, W. Guo, Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation, Nanotechnology 25 (2014) 105701. https://doi.org/10.1088/0957-4484/25/10/105701.

C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics, Nature Nanotechnology 5 (2010) 722. https://doi.org/10.1038/nnano.2010.172.

L. Britnell, R. v. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S. v. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Field-effect tunneling transistor based on vertical graphene heterostructures, Science 335 (2012) 947. https://doi.org/10.1126/SCIENCE.1218461/SUPPL_FILE/BRITNELL-SOM.PDF.

A. Falin, Q. Cai, E.J.G. Santos, D. Scullion, D. Qian, R. Zhang, Z. Yang, S. Huang, K. Watanabe, T. Taniguchi, M.R. Barnett, Y. Chen, R.S. Ruoff, L.H. Li, Mechanical properties of atomically thin boron nitride and the role of interlayer interactions, Nature Communications 8 (2017) 1. https://doi.org/10.1038/ncomms15815.

X. Li, H. Qiu, X. Liu, J. Yin, W. Guo, X. Li, H. Qiu, X. Liu, J. Yin, W. Guo, Wettability of Supported Monolayer Hexagonal Boron Nitride in Air, Adv Funct Mater 27 (2017) 1603181. https://doi.org/10.1002/ADFM.201603181.

I. Mata-Cruz, A. Vargas-Caamal, B. Yañez-Soto, A. López-Valdivieso, G. Merino, M. Quintana, Mimicking rose petal wettability by chemical modification of graphene films, Carbon N Y 121 (2017) 472. https://doi.org/10.1016/J.CARBON.2017.06.018.

G. Sánchez-Balderas, E. Pérez, On the usefulness of the equation of state approach for contact angles on rough surfaces, Applied Physics A 126 (2019) 1. https://doi.org/10.1007/S00339-019-3177-5.

A. Kumar, G. Malik, K. Goyal, N. Sardana, R. Chandra, R.S. Mulik, Controllable synthesis of tunable aspect ratios novel h-BN nanorods with an enhanced wetting performance for water repellent applications, Vacuum 184 (2021) 109927. https://doi.org/10.1016/J.VACUUM.2020.109927.

G. Sánchez-Balderas, J.D.H. Velázquez, E. Pérez, Dependence of the Liquid Polarity in the Wetting of Rough Surface: An Effective Surface Tension Approach, Langmuir 38 (2022) 12804. https://doi.org/10.1021/ACS.LANGMUIR.2C01582/ASSET/IMAGES/MEDIUM/LA2C01582_0009.GIF.

K.J. Kubiak, M.C.T. Wilson, T.G. Mathia, P. Carval, Wettability versus roughness of engineering surfaces, Wear 271 (2011) 523. https://doi.org/10.1016/J.WEAR.2010.03.029.

F. Mahvash, S. Eissa, T. Bordjiba, A.C. Tavares, T. Szkopek, M. Siaj, Corrosion resistance of monolayer hexagonal boron nitride on copper, Scientific Reports 7 (2017) 1. https://doi.org/10.1038/srep42139.

L.B. Boinovich, A.M. Emelyanenko, A.S. Pashinin, C.H. Lee, J. Drelich, Y.K. Yap, Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings, Langmuir 28 (2012) 1206. https://doi.org/10.1021/LA204429Z/ASSET/IMAGES/MEDIUM/LA-2011-04429Z_0011.GIF.

H. Li, X.C. Zeng, Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets, ACS Nano 6 (2012) 2401. https://doi.org/10.1021/NN204661D/SUPPL_FILE/NN204661D_SI_002.MPG.

C.H. Lee, J. Drelich, Y.K. Yap, Superhydrophobicity of boron nitride nanotubes grown on silicon substrates, Langmuir 25 (2009) 4853. https://doi.org/10.1021/LA900511Z/ASSET/IMAGES/MEDIUM/LA-2009-00511Z_0012.GIF.

M. Velický, P.S. Toth, A.M. Rakowski, A.P. Rooney, A. Kozikov, C.R. Woods, A. Mishchenko, L. Fumagalli, J. Yin, V. Zólyomi, T. Georgiou, S.J. Haigh, K.S. Novoselov, R.A.W. Dryfe, Exfoliation of natural van der Waals heterostructures to a single unit cell thickness, Nature Communications 8 (2017) 1. https://doi.org/10.1038/ncomms14410.

H. Liu, C.Y. You, J. Li, P.R. Galligan, J. You, Z. Liu, Y. Cai, Z. Luo, Synthesis of hexagonal boron nitrides by chemical vapor deposition and their use as single photon emitters, Nano Materials Science 3 (2021) 291. https://doi.org/10.1016/J.NANOMS.2021.03.002.

D. Paciĺ, J.C. Meyer, Ç. Girit, A. Zettl, The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes, Appl Phys Lett 92 (2008) 133107. https://doi.org/10.1063/1.2903702.

J.H. Park, S.H. Choi, J. Zhao, S. Song, W. Yang, S.M. Kim, K.K. Kim, Y.H. Lee, Thickness-controlled multilayer hexagonal boron nitride film prepared by plasma-enhanced chemical vapor deposition, Current Applied Physics 16 (2016) 1229. https://doi.org/10.1016/J.CAP.2016.03.025.

A.R. Jang, S. Hong, C. Hyun, S.I. Yoon, G. Kim, H.Y. Jeong, T.J. Shin, S.O. Park, K. Wong, S.K. Kwak, N. Park, K. Yu, E. Choi, A. Mishchenko, F. Withers, K.S. Novoselov, H. Lim, H.S. Shin, Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire, Nano Lett 16 (2016) 3360. https://doi.org/10.1021/ACS.NANOLETT.6B01051/SUPPL_FILE/NL6B01051_SI_001.PDF.

B. Chunyi Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, C.Y. Zhi, Y. Bando, C.C. Tang, D. Golberg, H. Kuwahara, Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties, Advanced Materials 21 (2009) 2889. https://doi.org/10.1002/ADMA.200900323.

W.Q. Han, L. Wu, Y. Zhu, K. Watanabe, T. Taniguchi, Structure of chemically derived mono- and few-atomic-layer boron nitride sheets, Appl Phys Lett 93 (2008) 223103. https://doi.org/10.1063/1.3041639.

G. Ciampalini, C. v. Blaga, N. Tappy, S. Pezzini, K. Watanabe, T. Taniguchi, F. Bianco, S. Roddaro, A. Fontcuberta I Morral, F. Fabbri, Light emission properties of mechanical exfoliation induced extended defects in hexagonal boron nitride flakes, 2d Mater 9 (2022) 035018. https://doi.org/10.1088/2053-1583/AC6F09.

A.J. Watson, W. Lu, M.H.D. Guimarães, M. Stöhr, Transfer of large-scale two-dimensional semiconductors: challenges and developments, 2D materials 8 (2021) 032001. https://doi.org/10.1088/2053-1583/abf234.

J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I. v. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science 331 (2011) 568. https://doi.org/10.1126/SCIENCE.1194975/SUPPL_FILE/COLEMAN.SOM.PDF.

J.D. Miller, S. Veeramasuneni, J. Drelich, M.R. Yalamanchili, G. Yamauchi, Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films, Polym Eng Sci 36 (1996) 1849. https://doi.org/10.1002/PEN.10580.

S. Gao, W. Liu, Z. Liu, Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation, Nanoscale 11 (2019) 459. https://doi.org/10.1039/C8NR05772A.

E. Wagemann, Y. Wang, S. Das, S.K. Mitra, Wettability of nanostructured hexagonal boron nitride surfaces: molecular dynamics insights on the effect of wetting anisotropy, Physical Chemistry Chemical Physics 22 (2020) 2488. https://doi.org/10.1039/C9CP06708F.

J.E. Andrews, Y. Wang, S. Sinha, P.W. Chung, S. Das, Roughness-Induced Chemical Heterogeneity Leads to Large Hydrophobicity in Wetting-Translucent Nanostructures, Journal of Physical Chemistry C 121 (2017) 10010. https://doi.org/10.1021/ACS.JPCC.7B02222/SUPPL_FILE/JP7B02222_SI_003.AVI.

Downloads

Published

2023-07-04

How to Cite

[1]
S. Acosta, V. . Pérez Luna, G. Sánchez Balderas, J. M. . Hernández Meza, B. . Yáñez Soto, and M. Quintana, “Wetting properties of thin films of exfoliated hexagonal boron nitride in different solvents”, Rev. Mex. Fís., vol. 69, no. 4 Jul-Aug, pp. 041607 1–, Jul. 2023.